Из этого следует, что уравнение всегда имеет хотя бы одно решение - . Задача сводится к тому, чтобы посмотреть, при каких будут корни у уравнения и сколько их будет. Для этого достаточно рассмотреть 2 ситуации.
1) проверим, при каком значении корнем уравнения будет . Подставляем ноль в уравнение: . При имеем:
Делаем вывод, что при уравнение имеет два корня: .
2) при уравнение не может иметь корень . Уравнение - квадратное. Сразу ищем дискриминант:
Здесь рассматриваем 3 случая:
2.1. Если , то уравнение решений не имеет - следовательно, вторая скобка не будет давать новых решений и у исходного уравнения оно будет единственным.
2.2. Если , то подставляя вместо параметра -9 в итоге получаем: . Итого "вылез" еще один корень - значит, у исходного уравнения их будет два.
2.3. Если , то уравнение имеет два решения - следовательно, исходное будет иметь уже 3 решения. Заметим, что в это неравенство входит , а мы его проверяли отдельно - при корней будет 2, а не 3, поэтому из неравенства его нужно исключить.
ОТВЕТ: При уравнение имеет единственный корень; при и уравнение имеет два различных корня; при уравнение имеет три различных корня.
Перенесем все влево и вынесем за скобки :
Из этого следует, что уравнение всегда имеет хотя бы одно решение - . Задача сводится к тому, чтобы посмотреть, при каких будут корни у уравнения и сколько их будет. Для этого достаточно рассмотреть 2 ситуации.
1) проверим, при каком значении корнем уравнения будет . Подставляем ноль в уравнение: . При имеем:
Делаем вывод, что при уравнение имеет два корня: .
2) при уравнение не может иметь корень . Уравнение - квадратное. Сразу ищем дискриминант:
Здесь рассматриваем 3 случая:
2.1. Если , то уравнение решений не имеет - следовательно, вторая скобка не будет давать новых решений и у исходного уравнения оно будет единственным.
2.2. Если , то подставляя вместо параметра -9 в итоге получаем: . Итого "вылез" еще один корень - значит, у исходного уравнения их будет два.
2.3. Если , то уравнение имеет два решения - следовательно, исходное будет иметь уже 3 решения. Заметим, что в это неравенство входит , а мы его проверяли отдельно - при корней будет 2, а не 3, поэтому из неравенства его нужно исключить.
ОТВЕТ: При уравнение имеет единственный корень; при и уравнение имеет два различных корня; при уравнение имеет три различных корня.
Объяснение:
х км/ч — скорость течения реки,
(х + 20) км/ч — собственная скорость теплохода ( скорость в стоячей воде)
Скорость движения теплохода по течению реки будет:
х+(х+20)=2х+20 км/час
Скорость движения теплохода против течения реки будет :
(х+20)-х=20 км/час
Значит можем найти время движения по течению и против течения:
время движения по течению
60 / (2х + 20) час.
против течения
60 / 20 = 3 час.
Если всего за 5,5 часа , то
5,5 - 3 = 2,5 час. - движение по течению
Отсюда :
60 / (2х + 20) = 2,5.
2,5 * (2х + 20)=60
5х + 50=60
5х=10
х = 2 км/час скорость течения реки
2 + 20 = 22 км/ч. собственная скорость теплохода ( скорость в стоячей воде)