Используя это, выражение можно представить так: (впереди всегда ставится первый коэфицент, в данном случае 5, а остальное раскладываем на скобки ... затем пять умножаем на вторую скобку, чтобы избавиться от дроби 0,4)
5x^2+3x-2= 5(x+1)(x-0,4)= (x+1)(5x-2)
Тоже самое делаем со вторым выражением:
10x^2+x-2=0
D=1+80=81
корень из D=9
x1= -1-9/20= -0,5
x2= -1+9/20= 0,4
Тут все так же. Впереди 10, но мы раскладываем десятку на 2 и 5, и умножаем на "удобные" скобки, чтобы избавиться от дробей.
10x^2+x-2= 10(x+0,5)(х-0,4)= (2х+1)(5х-2)
Заменяем данные выражения - получившимися:
(х+1)(5х-2) / (2х+1)(5х-2)= х+1 / 2х+1
При делении скобка (5х-2) сократится.
Окончательный ответ дробь х+1 / 2х+1
Это все :) Объяснила, как смогла, удачи))
Если что, во вложениях формулы для решения дискриминанта!
5x^2+3x-2 / 10x^2+x-2
Решим каждое выражение по формуле дискриминанта:
5x^2+3x-2=0
D= 9+40=49
корень из D=7
x1= -3-7/10= -1
x2= -3+7/10= 0,4
Используя это, выражение можно представить так: (впереди всегда ставится первый коэфицент, в данном случае 5, а остальное раскладываем на скобки ... затем пять умножаем на вторую скобку, чтобы избавиться от дроби 0,4)
5x^2+3x-2= 5(x+1)(x-0,4)= (x+1)(5x-2)
Тоже самое делаем со вторым выражением:
10x^2+x-2=0
D=1+80=81
корень из D=9
x1= -1-9/20= -0,5
x2= -1+9/20= 0,4
Тут все так же. Впереди 10, но мы раскладываем десятку на 2 и 5, и умножаем на "удобные" скобки, чтобы избавиться от дробей.
10x^2+x-2= 10(x+0,5)(х-0,4)= (2х+1)(5х-2)
Заменяем данные выражения - получившимися:
(х+1)(5х-2) / (2х+1)(5х-2)= х+1 / 2х+1
При делении скобка (5х-2) сократится.
Окончательный ответ дробь х+1 / 2х+1
Это все :) Объяснила, как смогла, удачи))
Если что, во вложениях формулы для решения дискриминанта!
Объяснение:
((a+7)\(a-7)-(a-7)\(a+7))\(14\(a^2-7a))
Приведем дроби в скобке к общему знаменателю a^2-49, домножив первую дробь на (a+7), а вторую на (a-7):
((a+7)^2-(a-7)^2)\(a^2-49)
По формуле разности квадратов:
((a+7-a+7)(a+7+a-7))\(a^2-49)
14*2a\a^2-49
28a\a^2-49
Представим деление одной дроби на другую умножением первой на перевернутую вторую:
(28a*(a^2-7a))\(14*(a^-49))
Вынесем в числителе "а" за скобку, а в знаменателе разложим скобку на множители:
(28a^2*(a-7))\(14(a-7)(a+7))
Сократим дробь:
2a^2\(x+7)