Функция y = x + 4/3 является линейной, т.к. здесь х в первой степени. Эта функция в общем виде может быть представлена как y = ax + b, где a и b - любые числа ( в нашем случае a = 1, а b = 4/3).
Функция y = x (x + 2) / x может быть преобразована в линейную только при условии, что x не равен 0 (при этом условии можно правую часть выражения сократить на х и получить y = x + 2), но в т.к. функция задана общем виде, без этого ограничения, то она не является линейной. Две последние функции содержат х в отрицательной степени (степень х равна -1), они обе не являются линейными.
Функция y = x + 4/3 является линейной, т.к. здесь х в первой степени. Эта функция в общем виде может быть представлена как y = ax + b, где a и b - любые числа ( в нашем случае a = 1, а b = 4/3).
Функция y = x (x + 2) / x может быть преобразована в линейную только при условии, что x не равен 0 (при этом условии можно правую часть выражения сократить на х и получить y = x + 2), но в т.к. функция задана общем виде, без этого ограничения, то она не является линейной. Две последние функции содержат х в отрицательной степени (степень х равна -1), они обе не являются линейными.
1) 32,16,8, ... меньше 0,01
b1=32 q=1/2 bn=b1·q^(n-1) b1·q^(n-1)<1/100 32·(1/2 )^(n-1)<1/100
2^(5-n+1)<1/100
6-n<log ₂(1/100) n>6-log ₂(1/100) n>6+log ₂(100) n>6+2log ₂(10)
3<log ₂(10)<4 (2³=8; 2⁴=16) n>6+2(3) n>12
2) 1/3 , 2/3, 4/3, ... больше 50?
b1=1/3 q=2 bn=b1q^(n-1)>50 (1/3)·2^(n-1)>50 2^(n-1)>150
n-1>log₂150 n>1+log₂150 7<log₂150 <8 ⇒n>1+7