f(x)=|x-1|-|x+1|+x Обзозначим график функции, как ломаную линию с отрезками [CA]-[AB]-[BD] (cм. чертеж во вложении), где [AB] пересекает точку начала координат О: [AO]=(OB], [CA] II [BD], т.к. A(-1;1) B(-3;-1) C(-3;-1) D(3;1) Вычислим k прямой y=kx, проходящей через точки А и В: А(-1;1) => 1=k*(-1) => k=-1 Вложение: таблицы и графики B(1;-1) => -1=k*1 => k=-1 Прямая а, проходящая через точки А,О,В имеет вид у=-х Прямая b, параллельная [AC] и [BD] и перпендикулярная прямой а, имеет вид у=х (k=1). В уравнении у=kx которая имеет с графиком данной функции только одну общую точку, k≠-1; k≠0; k≤1 k∈(-1;0)∪(0;1]
Воспользуемся формулой :
Возведем обе части в квадрат:
Рассмотрим 3 случая :
1.
----------------------
Мы знаем, что любое число(кроме 0) в любой степени больше нуля, то есть 2+а > 0 => a>-2
Так же 2-а уже должно быть меньше или равно нулю:
2-a ≤ 0 => a ≥ 2
Найдем пересечение => a ≥ 2
2.
По тому же принципу :
Найдем пересечение => a ≤-2
3.
----------------------------------------------------------------------
Объединим три ответа => a Є (-∞ ; -2] U [2 ; +∞)
ответ : a Є (-∞ ; -2] U [2 ; +∞) U {0}
P.S это одно из возможных решений, возможно вы найдете и по проще)
Обзозначим график функции, как ломаную линию с отрезками
[CA]-[AB]-[BD] (cм. чертеж во вложении), где [AB] пересекает точку начала координат О: [AO]=(OB],
[CA] II [BD], т.к. A(-1;1) B(-3;-1)
C(-3;-1) D(3;1)
Вычислим k прямой y=kx, проходящей через точки А и В:
А(-1;1) => 1=k*(-1) => k=-1
Вложение: таблицы и графики
B(1;-1) => -1=k*1 => k=-1
Прямая а, проходящая через точки А,О,В имеет вид у=-х
Прямая b, параллельная [AC] и [BD] и перпендикулярная прямой а,
имеет вид у=х (k=1).
В уравнении у=kx которая имеет с графиком данной функции только одну общую точку, k≠-1; k≠0; k≤1
k∈(-1;0)∪(0;1]