В решении.
Объяснение:
Сопоставь уравнение функции с рисунком, на котором изображен график этой функции. Количество соединений: 4.
1) у = (х + 2)² - 1;
Сдвиг функции у = х² влево по оси Ох на 2 единицы, вниз по оси Оу на 1 единицу. Четвёртый график;
2) у = (х - 2)² + 1;
Сдвиг функции у = х² вправо по оси Ох на 2 единицы, вверх по оси Оу на 1 единицу. Первый график;
3) у = (х + 2)² + 1;
Сдвиг функции у = х² влево по оси Ох на 2 единицы, вверх по оси Оу на 1 единицу. Второй график;
4) у = (х - 2)² - 1;
Сдвиг функции у = х² вправо по оси Ох на 2 единицы, вниз по оси Оу на 1 единицу. Третий график;
Дана функция у= х²- 2х - 3.
График её - парабола ветвями вверх.
Находим её вершину: хо = -в/2а = 2/(2*1) = 1.
уо = 1 - 2 - 3 = -4.
В точке (1; -4) находится минимум функции.
а) промежутки возрастания и убывания функции:
убывает х ∈ (-∞; 1),
возрастает х ∈ (1; +∞).
б) наименьшее значение функции: в точке (1; -4) находится минимум функции уmin = -4.
в) при каких значениях х у > 0.
Для этого надо найти точки пересечения графиком оси Ох
(при этом у тебя 0.)
х²- 2х - 3 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-2)^2-4*1*(-3)=4-4*(-3)=4-(-4*3)=4-(-12)=4+12=16;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√16-(-2))/(2*1)=(4-(-2))/2=(4+2)/2=6/2=3;
x_2=(-√16-(-2))/(2*1)=(-4-(-2))/2=(-4+2)/2=-2/2=-1.
Функция (то есть у) больше 0 при х ∈ (-∞; -1) ∪ (3; +∞)
В решении.
Объяснение:
Сопоставь уравнение функции с рисунком, на котором изображен график этой функции. Количество соединений: 4.
1) у = (х + 2)² - 1;
Сдвиг функции у = х² влево по оси Ох на 2 единицы, вниз по оси Оу на 1 единицу. Четвёртый график;
2) у = (х - 2)² + 1;
Сдвиг функции у = х² вправо по оси Ох на 2 единицы, вверх по оси Оу на 1 единицу. Первый график;
3) у = (х + 2)² + 1;
Сдвиг функции у = х² влево по оси Ох на 2 единицы, вверх по оси Оу на 1 единицу. Второй график;
4) у = (х - 2)² - 1;
Сдвиг функции у = х² вправо по оси Ох на 2 единицы, вниз по оси Оу на 1 единицу. Третий график;
Дана функция у= х²- 2х - 3.
График её - парабола ветвями вверх.
Находим её вершину: хо = -в/2а = 2/(2*1) = 1.
уо = 1 - 2 - 3 = -4.
В точке (1; -4) находится минимум функции.
а) промежутки возрастания и убывания функции:
убывает х ∈ (-∞; 1),
возрастает х ∈ (1; +∞).
б) наименьшее значение функции: в точке (1; -4) находится минимум функции уmin = -4.
в) при каких значениях х у > 0.
Для этого надо найти точки пересечения графиком оси Ох
(при этом у тебя 0.)
х²- 2х - 3 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-2)^2-4*1*(-3)=4-4*(-3)=4-(-4*3)=4-(-12)=4+12=16;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√16-(-2))/(2*1)=(4-(-2))/2=(4+2)/2=6/2=3;
x_2=(-√16-(-2))/(2*1)=(-4-(-2))/2=(-4+2)/2=-2/2=-1.
Функция (то есть у) больше 0 при х ∈ (-∞; -1) ∪ (3; +∞)