Lg означает десятичный логарифм —логарифм по основанию 10.Т.е lgb=log(10)b,пример lg100=log(10)100=2. lg (x^2-8)=lg (2-9x) В данном уравнении основания у тебя равны =>x^2-8=2-9x x^2+9x-10=0 x1=(-10),x2=1. ОДЗ: x^2-8>0 и 2-9x>0 Корень x2 не подходит=> ответ:x=(-10) При решении уравнений,а также неравенств тебе следует не забывать ОДЗ для логарифма,т.е,если log(a)b=c,то основание а>0 и а не равно 1,b>0.Типов заданий с логарифмами великое множество и к каждому случаю нужно индивидуальное решение)Кстати,есть еще lnb=log(e)b,где е-экспонента~2,72
tg(4x) = -1/√3 = -√3/3
4x = -π/6 + πk, k∈Z
x = -π/24 + (πk/4), k∈Z
x∈[-π/2; π/2]
Найдем, при каких k корни уравнения будут принадлежать указанному в условии отрезку:
-π/2 ≤ -π/24 + (πk/4) ≤ π/2
-π/2 + π/24 ≤ πk/4 ≤ π/2 + π/24
-11π/24 ≤ πk/4 ≤ 13π/24
-11/6 ≤ k ≤ 13/6, k∈Z
k = -1, 0, 1, 2
Итого будет 4 корня.
k = -1, x1 = -π/24 - π/4 = (-π - 6π)/24 = -7π/24
k = 0, x2 = -π/24
k = 1, x3 = -π/24 + π/4 = (-π + 6π)/24 = 5π/24
k = 2, x4 = -π/24 + 2π/4 = (-π + 12π)/24 = 11π/4
ответ: -7π/24, -π/24, 5π/24, 11π/24
lg (x^2-8)=lg (2-9x) В данном уравнении основания у тебя равны =>x^2-8=2-9x
x^2+9x-10=0
x1=(-10),x2=1.
ОДЗ: x^2-8>0 и 2-9x>0
Корень x2 не подходит=>
ответ:x=(-10)
При решении уравнений,а также неравенств тебе следует не забывать ОДЗ для логарифма,т.е,если log(a)b=c,то основание а>0 и а не равно 1,b>0.Типов заданий с логарифмами великое множество и к каждому случаю нужно индивидуальное решение)Кстати,есть еще lnb=log(e)b,где е-экспонента~2,72