Пусть d и a - решения этого уравнения. Тогда их можно считать взаимно простыми, т.к. иначе можно разделить обе части на квадрат их наибольшего общего делителя. Дальше. Мы видим, что правая часть обязательно делится на 11.Значит а² обязано делиться на 11, т.к.3 на 11 не делится. Так как 11 - простое число, то значит а делится на 11. Но значит вся правая часть делится на 11². Но значит и левая часть обязана делится на 11², а это значит что d² делится на 11. Т.е. и d делится на 11. Т.е. получается что а и d не взаимно просты. Это противоречие.
1) 3x² = 0 ⇒ х = 0
2) 9x² = 81 ⇒ х² = 9 ⇒ х₁= -3 и х₂ = 3
3) x² - 27 = 0 ⇒ х² = 27 ⇒ х = ⁺₋ √27 ⇒ х = ⁺₋ 3√3
4) 0.01x² = 4 ⇒ х² = 400 ⇒ х₁= -20 и х₂ = 20
2. Решить уравнения
1) x² + 5x = 0
х(х + 5) = 0
х₁ = 0 или х₂ = -5
2) 4x² = 0.16x
4x² - 0.16x = 0
4х (х - 0,04) = 0
х₁ = 0 или х₂ = 0,04
3) 9x² + 1 = 0
9x² = - 1 - НЕТ решения (корень из отрицательного числа НЕ существует)
3. Решить уравнения
1) 4x² - 169 = 0
4x² = 169
х² =
х₁ = -6,5 или х₂ = 6,5
2) 25 - 16x² = 0
16х² = 25
х₁ = -1,25 или х₂ = 1,25
3) 2x² - 16 = 0
2х² = 16
х² = 8
х₁ = -2√2 или х₂ = 2√2
4) 3x² = 15
х² = 5
х₁ = -√5 или х₂ = √5
5) 2x² =
х² =
х₁ = -0,25 или х₂ = 0,25
6) 3x² =
3х² =
х² =
х₁ = -1 или х₂ = 1
Дальше. Мы видим, что правая часть обязательно делится на 11.Значит а² обязано делиться на 11, т.к.3 на 11 не делится. Так как 11 - простое число, то значит а делится на 11. Но значит вся правая часть делится на 11². Но значит и левая часть обязана делится на 11², а это значит что d² делится на 11. Т.е. и d делится на 11. Т.е. получается что а и d не взаимно просты. Это противоречие.