0,7 и -0,7 ∉ ОДЗ
t=0\\ [/tex] sin(x)=0\x=\pi k [/tex]
k∈Z
[/tex] ODZ:cos(x)cos(2x)-sin(x)sin(2x)cos(2x)\neq 0\\cos(2x)(cos(x)-sin(x)sin(2x))\neq 0\\cos(2x)\neq 0\\x\neq \frac{\pi}{4} +\frac{\pi k}{2} \\cos(x)-sin(x)sin(2x)\neq 0\\cos(x)-2sin^2(x)cos(x)\neq 0\\cos(x)(1-2sin^2(x))\neq =0\\cos(x)\neq 0\\x\neq \frac{\pi}{2} +\pi k\\1-2sin^2(x)=0\\cos(2x)\neq 0\\x\neq \frac{\pi}{4} +\frac{\pi k}{2} \\x\neq \left \{ {{\frac{\pi}{4}+\frac{\pi k}{2} } \atop {\frac{\pi}{2} }+\pi k} \right. [/tex]
Первое ОДЗ было сделано на t .Второе ОДЗ было сделано на x
ответ:x=πk,k∈Z
Число, которое при делении на 2; 3; 5 и 7 даёт остаток 1, должно быть вида:
НОК(2; 3; 5; 7) + 1,
где НОК - наименьшее общее кратное чисел 2; 3; 5 и 7.
Числа 2; 3; 5 и 7 - взаимно простые, значит,
НОК(2; 3; 5; 7) = 2 · 3 · 5 · 7 = 210.
И теперь получаем формулу для нужных нам чисел:
N = 210n + 1
где n - натуральное число ( n ∈ N)
Получаем неравенство для данного промежутка [2; 1020]:
2 ≤ 210n+1 ≤ 1020
2 -1 ≤ 210n+1 -1 ≤ 1020 -1
1 ≤ 210n ≤ 1019
1 : 210 ≤ 210n : 210 ≤ 1019 : 210
1/210 ≤ n ≤ 1019/210
0,0047 ≤ n ≤ 4,852...
Из этого неравенства выбираем только натуральные числа:
n=1
n=2
n=3
n=4
Всего 4 числа.
Можно их найти с нашей формулы N = 210n + 1.
n=1; N₁ = 210*1 + 1= 211
n=2; N₂ = 210*2 + 1= 421
n=3; N₃ = 210*3 + 1= 631
n=4; N₄ = 210*4 + 1= 841
ответ: 4 числа
0,7 и -0,7 ∉ ОДЗ
t=0\\ [/tex] sin(x)=0\x=\pi k [/tex]
k∈Z
[/tex] ODZ:cos(x)cos(2x)-sin(x)sin(2x)cos(2x)\neq 0\\cos(2x)(cos(x)-sin(x)sin(2x))\neq 0\\cos(2x)\neq 0\\x\neq \frac{\pi}{4} +\frac{\pi k}{2} \\cos(x)-sin(x)sin(2x)\neq 0\\cos(x)-2sin^2(x)cos(x)\neq 0\\cos(x)(1-2sin^2(x))\neq =0\\cos(x)\neq 0\\x\neq \frac{\pi}{2} +\pi k\\1-2sin^2(x)=0\\cos(2x)\neq 0\\x\neq \frac{\pi}{4} +\frac{\pi k}{2} \\x\neq \left \{ {{\frac{\pi}{4}+\frac{\pi k}{2} } \atop {\frac{\pi}{2} }+\pi k} \right. [/tex]
Первое ОДЗ было сделано на t .Второе ОДЗ было сделано на x
ответ:x=πk,k∈Z
Число, которое при делении на 2; 3; 5 и 7 даёт остаток 1, должно быть вида:
НОК(2; 3; 5; 7) + 1,
где НОК - наименьшее общее кратное чисел 2; 3; 5 и 7.
Числа 2; 3; 5 и 7 - взаимно простые, значит,
НОК(2; 3; 5; 7) = 2 · 3 · 5 · 7 = 210.
И теперь получаем формулу для нужных нам чисел:
N = 210n + 1
где n - натуральное число ( n ∈ N)
Получаем неравенство для данного промежутка [2; 1020]:
2 ≤ 210n+1 ≤ 1020
2 -1 ≤ 210n+1 -1 ≤ 1020 -1
1 ≤ 210n ≤ 1019
1 : 210 ≤ 210n : 210 ≤ 1019 : 210
1/210 ≤ n ≤ 1019/210
0,0047 ≤ n ≤ 4,852...
Из этого неравенства выбираем только натуральные числа:
n=1
n=2
n=3
n=4
Всего 4 числа.
Можно их найти с нашей формулы N = 210n + 1.
n=1; N₁ = 210*1 + 1= 211
n=2; N₂ = 210*2 + 1= 421
n=3; N₃ = 210*3 + 1= 631
n=4; N₄ = 210*4 + 1= 841
ответ: 4 числа