1 шаг. Проверим справедливость утверждения при n=1:
- верно
2 шаг. Предположим, что при n=k следующее утверждение верно:
3 шаг. Докажем, что при n=k+1 следующее утверждение также будет верно:
Для доказательства выполним преобразования:
Рассмотрим получавшуюся сумму. Первое слагаемое делится на 9 по предположению, сделанному на предыдущем шаге. Во втором слагаемом первый множитель делится на 3. Значит, остается доказать, что второй множитель также делится на 3. Докажем это, используя арифметику остатков:
Мы получили, что выражение дает при делении на 3 такой остаток, как и число 3. Но число 3 кратно 3, значит и выражение кратно 3.
Возвращаясь к выражению , повторим, что первое слагаемое делится на 9, второе слагаемое представляет собой произведение двух множителей, каждое из которых делится на 3, то есть само слагаемое делится на 9. Сумма двух выражений, делящихся на 9, также делится на 9, или другими словами, кратна 9. Доказано.
Объяснение:
Уравнение вида называется квадратным уравнением.
а) Если один из коэффициентов или с равен нулю, то уравнение называется неполным . Данное уравнение неполное квадратное уравнение.
б) старший коэффициент а= 4;
второй коэффициент b= 16;
свободный член с= 0
в) решим данное уравнение. Для этого вынесем 4х ха скобки и разложим левую часть уравнения на множители.
Произведение равно нулю, если хотя бы один из множителей равен нулю, а другой при этом определен
х=0 или х+4=0
х= - 4
Данное уравнение имеет два корня - 4 и 0 .
1 шаг. Проверим справедливость утверждения при n=1:
- верно
2 шаг. Предположим, что при n=k следующее утверждение верно:
3 шаг. Докажем, что при n=k+1 следующее утверждение также будет верно:
Для доказательства выполним преобразования:
Рассмотрим получавшуюся сумму. Первое слагаемое делится на 9 по предположению, сделанному на предыдущем шаге. Во втором слагаемом первый множитель делится на 3. Значит, остается доказать, что второй множитель также делится на 3. Докажем это, используя арифметику остатков:
Мы получили, что выражение дает при делении на 3 такой остаток, как и число 3. Но число 3 кратно 3, значит и выражение кратно 3.
Возвращаясь к выражению , повторим, что первое слагаемое делится на 9, второе слагаемое представляет собой произведение двух множителей, каждое из которых делится на 3, то есть само слагаемое делится на 9. Сумма двух выражений, делящихся на 9, также делится на 9, или другими словами, кратна 9. Доказано.