В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
zhenya4546
zhenya4546
27.05.2020 23:41 •  Алгебра

При якому значенні параметра а розклад на лінійні множ- ники тричлена -5х2 + ax + 8 містить множник x – 2

Показать ответ
Ответ:
malekovemir
malekovemir
31.10.2020 07:52
1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x).
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.

2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) =  (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Решить 1) записать уравнение касатальной к графику функции f(x)=4x-sinx+1 в точке x0=0 2) найти знач
0,0(0 оценок)
Ответ:
ksushadream1
ksushadream1
21.07.2021 09:39

пример.рассмотрим следующую линейную функцию: y = 5x – 3.

1) d(y) = r;

2) e(y) = r;

3) функция общего вида;

4) непериодическая;

5) точки пересечения с осями координат:

ox:   5x – 3 = 0, x = 3/5, следовательно (3/5; 0) – точка пересечения с осью абсцисс.

oy:   y = -3, следовательно (0; -3) – точка пересечения с осью ординат;

6) y = 5x – 3 – положительна при x из (3/5; +∞),

y = 5x – 3 – отрицательна при x   из (-∞; 3/5);

7) y = 5x – 3 возрастает на всей области определения; линейной функцией называется функция вида y = kx + b, заданная на множестве всех действительных чисел. здесь k – угловой коэффициент (действительное число), b – свободный член (действительное число), x – независимая переменная.

в частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси ox, проходящая через точку с координатами (0; b).

если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.

смысл коэффициента b – длина отрезка, который отсекает прямая по оси oy, считая от начала координат.

смысл коэффициента k – угол наклона прямой к положительному направлению оси ox, считается против часовой стрелки.

свойства линейной функции:

1) область определения линейной функции есть вся вещественная ось;

2) если k ≠ 0, то область значений линейной функции есть вся вещественная ось. если k = 0, то область значений линейной функции состоит из числа b;

3) четность и нечетность линейной функции зависят от значений коэффициентов k и b.

a) b ≠ 0, k = 0, следовательно, y = b – четная;

b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

4) свойством периодичности линейная функция не обладает;

5) точки пересечения с осями координат:

ox:   y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.

oy:   y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.

замечание.если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х.

6) промежутки знакопостоянства зависят от коэффициента k.

a) k > 0;   kx + b > 0, kx > -b, x > -b/k.

y = kx + b – положительна при x   из (-b/k; +∞),

y = kx + b – отрицательна при x   из (-∞; -b/k).

b) k < 0; kx + b < 0, kx < -b, x < -b/k.

y = kx + b – положительна при x   из (-∞; -b/k),

y = kx + b – отрицательна при x   из (-b/k; +∞).

c) k = 0, b > 0; y = kx + b положительна на всей области определения,

k = 0, b < 0; y = kx + b отрицательна на всей области определения.

7) промежутки монотонности линейной функции зависят от коэффициента k.

k > 0, следовательно y = kx + b возрастает на всей области определения,

k < 0, следовательно y = kx + b убывает на всей области определения.

8) графиком линейной функции является прямая. для построения прямой достаточно знать две точки. положение прямой на координатной плоскости зависит от значений коэффициентов k и b. 

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота