Составьте предложение, выполнив предварительно ряд действий (слова предложения записываются по мере выполнения задания).
1.Из предложения Мы любили встречать рассвет на речке взять дополнение.
2.Добавить сказуемое из предложения Дождь застал нас врасплох.
3.Существительное, стоящее в именительном падеже в предложении Туристы с трудом преодолели подъем, употребить в родительном падеже множественного числа.
4.Из предложения На нашем пути лежало бревно взять обстоятельство места, выраженное существительным с предлогом.
5.Из предложения Над рекой расстилался туман взять существительное, выступающее в роли обстоятельства места, употребить в дательном падеже единственного числа с предлогом К.
Составьте предложение, выполнив предварительно ряд действий (слова предложения записываются по мере выполнения задания).
1.Из предложения Мы любили встречать рассвет на речке взять дополнение.
2.Добавить сказуемое из предложения Дождь застал нас врасплох.
3.Существительное, стоящее в именительном падеже в предложении Туристы с трудом преодолели подъем, употребить в родительном падеже множественного числа.
4.Из предложения На нашем пути лежало бревно взять обстоятельство места, выраженное существительным с предлогом.
5.Из предложения Над рекой расстилался туман взять существительное, выступающее в роли обстоятельства места, употребить в дательном падеже единственного числа с предлогом К.
Объяснение:
Построим график функцииy=|x+2|+|x-2|y=∣x+2∣+∣x−2∣
Для начала упростим функцию
Найдем знаки под модульного выражения
\begin{gathered} \left[\begin{array}{ccc}x+2=0\\ x-2=0\end{array}\right\Rightarrow \left[\begin{array}{ccc}x_1=-2\\ x_2=2\end{array}\right\end{gathered}
_-__-__(-2)__+__-__(2)__+__+__
\begin{gathered}y=|x+2|+|x-2|= \left[\begin{array}{ccc} \left \{ {{x \leq -2} \atop {-x-2-x+2}} \right. \\ \left \{ {{-2\ \textless \ x \leq 2} \atop {x+2-x+2}} \right. \\ \left \{ {{x\ \textgreater \ 2} \atop {x+2+x-2}} \right. \end{array}\right= \left[\begin{array}{ccc} \left \{ {{x \leq -2} \atop {-2x}} \right. \\ \left \{ {{-2\ \textless \ x \leq 2} \atop {4}} \right. \\ \left \{ {{x\ \textgreater \ 2} \atop {2x}} \right. \end{array}\right\end{gathered}
Наименьшее положительное значение параметра а найдем с параллельности прямых
График функции y=|x+2|+|x-2|y=∣x+2∣+∣x−2∣параллельный прямой y-ax+a-3=0y−ax+a−3=0 если угловые коэффициенты будут совпадать, т.е. k=\pm2k=±2
Но нам важен положительный параметр, значит a=2a=2 - минимальный.
Исследуем когда график будет касаться в точке (2;4) и (-2;4)
Подставив значения х=2 и у=4, получим
\begin{gathered}4-2a+a-3=0\\ 1-a=0\\ a=1\end{gathered}4−2a+a−3=01−a=0a=1
При а=1 система уравнений имеет одно решение
Если подставить x=-2x=−2 и y=4y=4 , получим
\begin{gathered}4+2a+a-3=0\\ 3a=-1\\ a=- \frac{1}{3} \end{gathered}4+2a+a−3=03a=−1a=−31
Наименьший параметр а=1.