Теперь проверим b2=-6 6x + 5=3x^2 -6x + 17 x^2 -4x + 4=0 (x-2)^2=0 x=2 этот х не подходит так как по условию нам нужна абсцисса точки касания меньше нуля
Здесь и далее фраза "не нарушая общности" будет означать, что мы можем так перетасовать вертикали и горизонтали, чтобы нужные нам линии имели нужные обозначения.
Пусть на некоторой вертикали (не нарушая общности - на вертикали А) находится 0<k<8 рыцарей (не нарушая общности - на полях с А1 по Аk). Рассмотрим лжеца на поле А8. Поскольку он утверждает, что на его горизонтали больше лжецов, чем на его вертикали, на самом деле это не так. Следовательно, на восьмой горизонтали как минимум k рыцарей (не нарушая общности - на полях с B8 по чётотам-8). Рассмотрим пересечения их вертикалей с первой горизонталью. Если бы на всех этих пересечениях стояли рыцари, то на первой вертикали оказалось бы минимум k+1 рыцарей, и рыцарь на А1 солгал бы. Значит, на каком-то из них (не нарушая общности - на В1) стоит лжец. При этом на вертикали В , согласно утверждению рыцаря с В8, более k рыцарей. Значит, следуя утверждению лжеца с B1, на горизонтали 1 также более k рыцарей. Получается, рыцарь с А1 лжёт. Противоречие.
Парадокс разрешим лишь в том случае, когда на каждой вертикали стоят либо 8 рыцарей, либо 8 лжецов. Из этого, в частности, следует доказываемое утверждение
Приравняем уравнения
6x + 5=3x^2 + bx + 17
3x^2 + (b-6)x + 12=0
D=(b-6)^2-144=b^2-12b+36-144=b^2-12b-108
Чтобы уравнение имело корни, нужно чтоб дискриминант был больше либо равен нулю
b^2-12b-108≥0
b^2-12b-108=0
D=144+432=576
b1=(12+24)/2=18
b2=(12-24)/2=-6
Теперь проверим b1=18
6x + 5=3x^2 + 18x + 17
x^2 + 4x + 4=0
(x+2)^2=0
x=-2
y=6*(-2)+5=7
Теперь проверим b2=-6
6x + 5=3x^2 -6x + 17
x^2 -4x + 4=0
(x-2)^2=0
x=2 этот х не подходит так как по условию нам нужна абсцисса точки касания меньше нуля
ответ: b1=18
Здесь и далее фраза "не нарушая общности" будет означать, что мы можем так перетасовать вертикали и горизонтали, чтобы нужные нам линии имели нужные обозначения.
Пусть на некоторой вертикали (не нарушая общности - на вертикали А) находится 0<k<8 рыцарей (не нарушая общности - на полях с А1 по Аk). Рассмотрим лжеца на поле А8. Поскольку он утверждает, что на его горизонтали больше лжецов, чем на его вертикали, на самом деле это не так. Следовательно, на восьмой горизонтали как минимум k рыцарей (не нарушая общности - на полях с B8 по чётотам-8). Рассмотрим пересечения их вертикалей с первой горизонталью. Если бы на всех этих пересечениях стояли рыцари, то на первой вертикали оказалось бы минимум k+1 рыцарей, и рыцарь на А1 солгал бы. Значит, на каком-то из них (не нарушая общности - на В1) стоит лжец. При этом на вертикали В , согласно утверждению рыцаря с В8, более k рыцарей. Значит, следуя утверждению лжеца с B1, на горизонтали 1 также более k рыцарей. Получается, рыцарь с А1 лжёт. Противоречие.
Парадокс разрешим лишь в том случае, когда на каждой вертикали стоят либо 8 рыцарей, либо 8 лжецов. Из этого, в частности, следует доказываемое утверждение
Объяснение:
Не знаю правильно ли