Примем работу за 1. Пусть производительность первого экскаватора (объём выполненной работы за 1 час) равна х, а второго экскаватора - у. Два экскаватора, работая совместно (х+у), могут вырыть котлован за 48 часов, то есть сделать 100% работы или 100%÷100%=1: 48(х+у)=1 (1)
Если первый проработает 40 часов, выполнив объём работы 40х, а второй 30 часов, выполнив объём работы 30у, то будет выполнено 75% работы или 75%÷100÷=0,75: 40х+30у=0,75 (2)
Составим и решим систему уравнений (методом подстановки): { 48(х+у)=1 { 40х+30у=0,75
{х+у=1/48 {40х+30у=0,75
{х=1/48-у {40х+30у=0,75
Подставим значение х во второе уравнение: 40(1/48-у)+30у=0,75 40/48-40у+30у=0,75 5/6-10у=0,75 -10у=0,75-5/6=75/100-5/6=3/4-5/6=3×3/12 - 5×2/12=9/12-10/12=-1/12 -10у=-1/12 10у=1/12 у=1/12÷10=1/120 - производительность второго экскаватора. Тогда он выполнит весь объем работы (равный 1) за: 1÷1/120=120 часов. ОТВЕТ: второй экскаватор, работая отдельно, сможет выполнить всю работу за 120 часов.
!Чтобы посчитать время работы первого экскаватора, подставим значение у в первое уравнение: х=1/48-у=1/48-1/120=5/240-2/240=3/240=1/80 1÷1/80=80 (часов)
Чтобы решить данное неравенство, сперва решим квадратное уравнение, приравняв левую часть к нолю
Теперь на оь Ох нанесем полученные точки(-1 и 4), точки закрашиваем, так как неравенство не строгое, вся ось разбивается на три интервала 1:(- беск: -1] 2.(-1;4) 3.[4; беск) + - + определим знак левой части, при представлении числа из промежутка 1:(- беск: -1] -2: 2.(-1;4) 3: : 3.[4; беск): 5: И так решением неравенства являются все значения х в указанных промежутках (- беск: -1] и.[4; беск) ответ: хЄ(- беск: -1] и.[4; беск)
Два экскаватора, работая совместно (х+у), могут вырыть котлован за 48 часов, то есть сделать 100% работы или 100%÷100%=1:
48(х+у)=1 (1)
Если первый проработает 40 часов, выполнив объём работы 40х, а второй 30 часов, выполнив объём работы 30у, то будет выполнено 75% работы или 75%÷100÷=0,75:
40х+30у=0,75 (2)
Составим и решим систему уравнений (методом подстановки):
{ 48(х+у)=1
{ 40х+30у=0,75
{х+у=1/48
{40х+30у=0,75
{х=1/48-у
{40х+30у=0,75
Подставим значение х во второе уравнение:
40(1/48-у)+30у=0,75
40/48-40у+30у=0,75
5/6-10у=0,75
-10у=0,75-5/6=75/100-5/6=3/4-5/6=3×3/12 - 5×2/12=9/12-10/12=-1/12
-10у=-1/12
10у=1/12
у=1/12÷10=1/120 - производительность второго экскаватора.
Тогда он выполнит весь объем работы (равный 1) за: 1÷1/120=120 часов.
ОТВЕТ: второй экскаватор, работая отдельно, сможет выполнить всю работу за 120 часов.
!Чтобы посчитать время работы первого экскаватора, подставим значение у в первое уравнение:
х=1/48-у=1/48-1/120=5/240-2/240=3/240=1/80
1÷1/80=80 (часов)
Теперь на оь Ох нанесем полученные точки(-1 и 4), точки закрашиваем, так как неравенство не строгое, вся ось разбивается на три интервала
1:(- беск: -1] 2.(-1;4) 3.[4; беск)
+ - +
определим знак левой части, при представлении числа из промежутка
1:(- беск: -1] -2:
2.(-1;4) 3: :
3.[4; беск): 5:
И так решением неравенства являются все значения х в указанных промежутках (- беск: -1] и.[4; беск)
ответ: хЄ(- беск: -1] и.[4; беск)