1. Аргумент функции - это независимая переменная. 2. Функция - это закон отображения множества Х на множество У - каждому значению х из множества Х соответствует одно единственное значение у из множества У. 3. Область определения функции - это множество допустимых значений аргумента. 4. График функции - это угеометрический образ функции, которые отображает множество точек плоскости, абсциссы и ординаты, связанных данной функцией. 5. Функцию называют линейной, если она задана формулой kx+b, где k - коэффициент прямой пропорциональности, b - свободный член (некое число). Линейную функцию называют функцией прямой пропорциональности, потому, что значения х прямопропорционпльны значениям у. 6. Графиком линейной функции является прямая, угол наклона которой задан коэффициентом k, а распотожение относительно оси 0Х задано свободным членом функции b/
2. Функция - это закон отображения множества Х на множество У - каждому значению х из множества Х соответствует одно единственное значение у из множества У.
3. Область определения функции - это множество допустимых значений аргумента.
4. График функции - это угеометрический образ функции, которые отображает множество точек плоскости, абсциссы и ординаты, связанных данной функцией.
5. Функцию называют линейной, если она задана формулой kx+b, где k - коэффициент прямой пропорциональности, b - свободный член (некое число). Линейную функцию называют функцией прямой пропорциональности, потому, что значения х прямопропорционпльны значениям у.
6. Графиком линейной функции является прямая, угол наклона которой задан коэффициентом k, а распотожение относительно оси 0Х задано свободным членом функции b/
Обозначим длины сторон прямоугольника через х и у.
Согласно условию задачи, площадь данного прямоугольника равна 72 см², следовательно, имеет место следующее соотношение:
х * у = 72.
Также известно, что периметр данного прямоугольника равен 36 см, , следовательно, имеет место следующее соотношение:
2 * (х + у) = 36.
Упрощая данное соотношение, получаем:
х + у = 36 / 2;
х + у = 18;
х = 18 - у.
Подставляя полученное значение для х в соотношение х * у = 72, получаем:
(18 - у) * у = 72.
Решаем полученное уравнение:
18у - у² = 72;
у² - 18у + 72 = 0;
у = 9 ± √(81 - 72) = 9 ± √9 = 9 ± 3.
у1 = 9 - 3 = 6;
у2 = 9 + 3 = 12.
Зная у, находим х:
х1 = 18 - у1 = 18 - 6 = 12;
х2 = 18 - у2 = 18 - 12 = 6.
ответ: стороны данного прямоугольника равны 6 см и 12 см.