В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Wenros
Wenros
28.10.2021 21:14 •  Алгебра

Пример 1:
Является ли решением системы уравнений {х2+ху-3=0 х+5=у
пара чисел (1; 3)
Проверка: х = 1; у = 3 {12+1·3-3=0 1+5=3 {1≠0 6≠3 значит (1; 3) не является решением системы
Пример 2:
Является ли решением системы уравнений {х2+ху-3=0 х+5=у
пара чисел (1; 6)
Проверка: х = 1; у = 4 {12+1·6-3=0 1+5=6 {4≠0 6=6 значит (1; 6) не является решением системы
Пример 1:
Является ли решением системы уравнений {х2+ху-3=0 х+5=у
пара чисел (0,5; 5,5)
Проверка: х = 0,5; у = 5,5 {0,52+0,5·5,5-3=0 0,5+5=5,5 {0=0 5,5=5,5 значит (0,5; 5,5) является решением системы

Показать ответ
Ответ:
nastyshanastia1
nastyshanastia1
24.06.2021 15:11
Lg означает десятичный логарифм —логарифм по основанию 10.Т.е lgb=log(10)b,пример lg100=log(10)100=2.
lg (x^2-8)=lg (2-9x) В данном уравнении основания у тебя равны =>x^2-8=2-9x
x^2+9x-10=0
x1=(-10),x2=1.
ОДЗ: x^2-8>0 и 2-9x>0
Корень x2 не подходит=>
ответ:x=(-10)
При решении уравнений,а также неравенств тебе следует не забывать ОДЗ для логарифма,т.е,если log(a)b=c,то основание а>0 и а не равно 1,b>0.Типов заданий с логарифмами великое множество и к каждому случаю нужно индивидуальное решение)Кстати,есть еще lnb=log(e)b,где е-экспонента~2,72
0,0(0 оценок)
Ответ:
sashkaignatoly
sashkaignatoly
02.11.2021 03:42

Присмотревшись к системе внимательно, замечаем, что это - система линейных уравнений, поскольку переменные x и y входят в неё в первых степенях.

Следовательно, решаем её как и любую линейную систему: подстановкой.

Из первого уравнения выражаем y и подставляем во второе:

Подставляем во второе:

Здесь я выделил коэффициент при x, зависящий от параметра, а, кроме того, кубический многочлен от параметра разложил на множители для большего удобства.

Теперь рассматриваем уравнение как линейное(с переменной x).

Очевидно, для любого линейного уравнения возможны следующие три случая:

       а)Уравнение имеет ровно одно решение;

       б)Уравнение имеет бесконечное множество решений;

       в)Уравнение вообще не имеет решений.

Для начала стоит рассмотреть частные случаи.

     а)Пусть . Тогда после подстановки получаем уравнение

           , которое представляет из себя верное равенство(при умножении на 0 всегда получаем 0), а потому верно для любого x.

     б)Пусть . Аналогичная ситуация имеет место. Уравнение вновь имеет бесконечно много решений, следовательно, и вся система(поскольку каждому x соответствует ровно один y, то бесконечному количеству значений x соответствует бесконечное количество значений y).

     в)Пусть теперь .

Тогда сокращаем обе части уравнения на общий множитель:

         

То есть, для всех таких значений параметра а всегда имеет ровно 1 решение линейного уравнения(равное a-1). Тогда сразу из другого уравнения находим y:

     

таким образом, ответ можно записать так:

ответ:  если , система имеет бесконечно много решений;

            если , то система имеет единственное решение

Объяснение:

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота