большинство уравнений плохо видно на картинке , если вдруг написание кого-либо из них у меня будет неверным , напиши мне об этом в комментариях и я исправлю и решу ещё раз
// Воспользуемся тригонометрической единичной окружностью (во вложении)
sin x > 0 (красный) - в верхней половине, а значит x ∈ (0 ; π).
Поскольку мы не ограничиваемся одним оборотом по окружности, а синус является периодической функцией с T = 2π, ответом для всего промежутка будет x∈(2πk ; π + 2πk), k ∈ Z.
cos x ≤ 0 (жёлтый) - в левой половине, а значит x ∈ (π/2 ; 3π/2).
Поскольку мы не ограничиваемся одним оборотом по окружности, а косинус является периодической функцией с T = 2π, ответом для всего промежутка будет x∈(π/2 + 2πk ; 3π/2 + 2πk), k ∈ Z.
tg x ≤ 0 (зелёный) - во второй и четвёртой четвертях, а значит x ∈ (π/2 ; π] ∪ (3π/2 ; 2π].
Поскольку мы не ограничиваемся одним оборотом по окружности, а тангенс является периодической функцией с T = π, ответом для всего промежутка будет x ∈ (π/2 + πk ; π + πk].
ctg x > 0 (голубой) - в первой и третьей четвертях, а значит x ∈ (0 ; π/2) ∪ (π ; 3π/2).
Поскольку мы не ограничиваемся одним оборотом по окружности, а котангенс является периодической функцией с T = π, ответом для всего промежутка будет x ∈ (πk ; π/2 + πk).
большинство уравнений плохо видно на картинке , если вдруг написание кого-либо из них у меня будет неверным , напиши мне об этом в комментариях и я исправлю и решу ещё раз
1. 6 + 3х² = 3х
нет решений
2. -х² = 0,4
нет решений
3. -2х² + 3х = 0
х1 = 0 ; х2 = 3/2
4. 8х + 1 = -7х²
х1 = -1 ; х2 = -1/7
5. 1 + х² = -2х
х = -1
6. -х² = 9 - 6х
х = 3
7. 7х = 6х² - 5
х1 = -1/2 ; х2 = 5/3
8. 13х - 14 - 3х² = 0
х1 = 2 ; х2 = 7/3
9. 12 = 11х + 5х²
х1 = -3 ; х2 = 4/5
10. -8х - 16х² = 1
х = -1/4
11. 25 + 4х² - 20х = 0
х = 5/2
12. 2х² - 1 = 0
х1 = -√2/2 ; х2 = √2/2
отметь мой ответ коронкой как лучший ответ
// Воспользуемся тригонометрической единичной окружностью (во вложении)
sin x > 0 (красный) - в верхней половине, а значит x ∈ (0 ; π).
Поскольку мы не ограничиваемся одним оборотом по окружности, а синус является периодической функцией с T = 2π, ответом для всего промежутка будет x∈(2πk ; π + 2πk), k ∈ Z.
cos x ≤ 0 (жёлтый) - в левой половине, а значит x ∈ (π/2 ; 3π/2).
Поскольку мы не ограничиваемся одним оборотом по окружности, а косинус является периодической функцией с T = 2π, ответом для всего промежутка будет x∈(π/2 + 2πk ; 3π/2 + 2πk), k ∈ Z.
tg x ≤ 0 (зелёный) - во второй и четвёртой четвертях, а значит x ∈ (π/2 ; π] ∪ (3π/2 ; 2π].
Поскольку мы не ограничиваемся одним оборотом по окружности, а тангенс является периодической функцией с T = π, ответом для всего промежутка будет x ∈ (π/2 + πk ; π + πk].
ctg x > 0 (голубой) - в первой и третьей четвертях, а значит x ∈ (0 ; π/2) ∪ (π ; 3π/2).
Поскольку мы не ограничиваемся одним оборотом по окружности, а котангенс является периодической функцией с T = π, ответом для всего промежутка будет x ∈ (πk ; π/2 + πk).