Линейная функция имеет формулу: y = kx + b прямая пропорциональность имеет формулу: y = kx т.к. по условию их графики параллельны, то их коэффициенты (k) равны.
уравнение прямой, проходящей через две точки, имеет вид: (x - x1) / (x2 - x1) = (y - y1) / (y2 - y1), где x1, x2, y1, y2 - координаты в данном случае x1 = 0, y1 = 2, x2 = 6, y2 = 0 тогда (x - 0) / (6 - 0) = (y - 2) / (0 - 2) x / 6 = (y - 2) / -2 | умножаем на 6 x = -3(y - 2) x = -3y + 6 6 - 3y = x 3y = 6 - x y = (6 - x) / 3 y = 2 - x/3 - линейная функция, её коэффициент k = -1/3
т.к. коэффициенты равны, то прямая пропорциональность имеет формула y = -x/3
если b[1], b[2], b[3], .. - данная бесконечная убывающая геомметрическая прогрессия с знаменателем q, то
последовательность составленная из квадратов членов данной, тоже бессконечная убывающая c первым членом b[1] и знаменателем q^2
используя формулу суммы бесконечной убывающей прогрессии
b[1]/(1-q)=4
b[1]^2/(1-q^2)=48
откуда разделив соотвественно левые и правые части равенств, и используя формулу разности квадратов
b[1]^2/(1-q^2) :b[1]/(1-q)=48/4
b[1]/(1+q)=12
откуда
b[1]=12(1+q)=4(1-q)
12+12q=4-4q
12q+4q=4-12
16q=-8
q=-1/2
b[1]=4*(1-(-1/2))=4+2=6
прямая пропорциональность имеет формулу: y = kx
т.к. по условию их графики параллельны, то их коэффициенты (k) равны.
уравнение прямой, проходящей через две точки, имеет вид: (x - x1) / (x2 - x1) = (y - y1) / (y2 - y1), где x1, x2, y1, y2 - координаты
в данном случае x1 = 0, y1 = 2, x2 = 6, y2 = 0
тогда (x - 0) / (6 - 0) = (y - 2) / (0 - 2)
x / 6 = (y - 2) / -2 | умножаем на 6
x = -3(y - 2)
x = -3y + 6
6 - 3y = x
3y = 6 - x
y = (6 - x) / 3
y = 2 - x/3 - линейная функция, её коэффициент k = -1/3
т.к. коэффициенты равны, то прямая пропорциональность имеет формула y = -x/3