Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
elenamatveeva3
21.01.2020 20:18 •
Алгебра
Прирост процента 0 3сколько будет процентов 100% или 300%?
Показать ответ
Ответ:
VlEllen
03.12.2021 20:52
F(x) = cos5x · cos(x + π/6)
g(x) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) - sin5x · sin(x + π/6) = 0.5√3
cos (6x + π/6) = 0.5√3
6x + π/6 = ⁺₋ π/6 + 2πn n∈Z
1) 6x₁ + π/6 = + π/6 + 2πn n∈Z 2) 6x₂ + π/6 = - π/6 + 2πn n∈Z
1) 6x₁ = 2πn n∈Z 2) 6x₂ = - π/3 + 2πn n∈Z
1) x₁ = πn/3 n∈Z 2) x₂ = - π/18 + πn/3 n∈Z
ответ: x₁ = πn/3 n∈Z
x₂ = - π/18 + πn/3 n∈Z
0,0
(0 оценок)
Ответ:
Georgiy11111
03.12.2021 20:52
F(x) = cos5x · cos(x + π/6)
g(x) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) - sin5x · sin(x + π/6) = 0.5√3
cos (6x + π/6) = 0.5√3
6x + π/6 = ⁺₋ π/6 + 2πn n∈Z
1) 6x₁ + π/6 = + π/6 + 2πn n∈Z 2) 6x₂ + π/6 = - π/6 + 2πn n∈Z
1) 6x₁ = 2πn n∈Z 2) 6x₂ = - π/3 + 2πn n∈Z
1) x₁ = πn/3 n∈Z 2) x₂ = - π/18 + πn/3 n∈Z
ответ: x₁ = πn/3 n∈Z
x₂ = - π/18 + πn/3 n∈Z
0,0
(0 оценок)
Популярные вопросы: Алгебра
SUPERMARY007
23.12.2021 13:11
Решите уравнение[tex](x + 5) {}^{2} = (x - 1) {}^{2} [/tex]...
SnopcovaAlina07
15.06.2020 21:03
5у-7/(у-3)*(2у+5)-5/у укажите допустимые значения переменной в выражение...
destroyer0800
16.12.2022 15:27
35б.решите квадратное уравнение: 1)2х^-7х+6 0 2)5х-12х+4 0 3)-3х+11х+4меньше или равно 0 4)9х^-4х-2 больше или равно 0 ! ...
AbiloWa
02.01.2022 05:55
Разложить на множители: 1)a+b+a²-b² 2)9a²-6ab+b²-16 3)x³y²-x³-xy²+x 4)1-x²+4xy-4y²...
mamikon777
19.12.2020 16:28
Решите систему x^2-5x+6 0 x-1 1,5...
БейшеналиеваГ
27.05.2023 02:21
вас с тригонометрическими функциями, только не пишите ерунду мне нужно...
kravchenjatkop00zs0
03.03.2021 09:01
решить . Найти все значения...
Диана05005
29.08.2022 03:50
8. Розв’яжіть нерівність: а) 3−x 2 + 4+x 3 ≤ 1 6 ; б) |8 − 4x| 8. дайте ответ...
Наташа123454321
24.09.2021 08:43
Найдите объем тела ,полученного при вращении параболы у=4х² от точки х=1 до точки х=3 вокруг оси абсцисс. Критерии оценивания: Использует формулу нахождения объема фигуры Находит первообразную...
kochanovaleksa
03.03.2020 15:40
Найдите наибольшее значение функции у=х3-3х2-45х+225 на отрезке [0; 6]...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
g(x) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) - sin5x · sin(x + π/6) = 0.5√3
cos (6x + π/6) = 0.5√3
6x + π/6 = ⁺₋ π/6 + 2πn n∈Z
1) 6x₁ + π/6 = + π/6 + 2πn n∈Z 2) 6x₂ + π/6 = - π/6 + 2πn n∈Z
1) 6x₁ = 2πn n∈Z 2) 6x₂ = - π/3 + 2πn n∈Z
1) x₁ = πn/3 n∈Z 2) x₂ = - π/18 + πn/3 n∈Z
ответ: x₁ = πn/3 n∈Z
x₂ = - π/18 + πn/3 n∈Z
g(x) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) - sin5x · sin(x + π/6) = 0.5√3
cos (6x + π/6) = 0.5√3
6x + π/6 = ⁺₋ π/6 + 2πn n∈Z
1) 6x₁ + π/6 = + π/6 + 2πn n∈Z 2) 6x₂ + π/6 = - π/6 + 2πn n∈Z
1) 6x₁ = 2πn n∈Z 2) 6x₂ = - π/3 + 2πn n∈Z
1) x₁ = πn/3 n∈Z 2) x₂ = - π/18 + πn/3 n∈Z
ответ: x₁ = πn/3 n∈Z
x₂ = - π/18 + πn/3 n∈Z