Даны координаты вершин треугольника А(15;9), B(-1;-3), C(6;21). Требуется найти: 1) уравнение и длину стороны ВС. ВС : (Х-Хв)/(Хс-Хв) = (У-Ув)/(Ус-Ув). 24 Х - 7 У + 3 = 0. y = (24/7)x + (3/7). |BC| = BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √625 = 25.
2) уравнение и длину высоты, проведённой из вершины А. Находим длины двух других сторон. АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √400 = 20. AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √225 = 15. По сумме квадратов этих сторон определяем, что треугольник прямоугольный. Находи его площадь. S = (1/2)*20*15 = 150 кв.ед. Тогда высота ha = 2S/a = 2*150/25 = 12. Уравнение ha: у = -1/(24/7)х + в. Подставим координаты точки А(15;9). 9 = (-7/24)*15 + в. в = 9 + (105/24) = 321/24 = 107/8. Тогда уравнение ha: у = -1/(24/7)х + (107/8).
3) уравнение медианы, проведённой из вершины А(15;9). Находим координаты точки М - середины стороны ВС: B(-1;-3), C(6;21). М((-1+6)/2=2,5; (-3+21)/2=9) = (2,5; 9). АМ: (х -15)/(-12,5) = (у - 9)/0.
4) площадь треугольника. (дана в пункте 2). Сделать чертёж.
Далее нужно найти определенный интеграл A от 10+x при х от -6 до 3, определенный интеграл B от 1/3x^2+2x+4 при х от -6 до 3, их разность и будет искомой площадью фигуры:
Требуется найти:
1) уравнение и длину стороны ВС.
ВС : (Х-Хв)/(Хс-Хв) = (У-Ув)/(Ус-Ув).
24 Х - 7 У + 3 = 0.
y = (24/7)x + (3/7).
|BC| = BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √625 = 25.
2) уравнение и длину высоты, проведённой из вершины А.
Находим длины двух других сторон.
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √400 = 20.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √225 = 15.
По сумме квадратов этих сторон определяем, что треугольник прямоугольный.
Находи его площадь.
S = (1/2)*20*15 = 150 кв.ед.
Тогда высота ha = 2S/a = 2*150/25 = 12.
Уравнение ha: у = -1/(24/7)х + в.
Подставим координаты точки А(15;9).
9 = (-7/24)*15 + в.
в = 9 + (105/24) = 321/24 = 107/8.
Тогда уравнение ha: у = -1/(24/7)х + (107/8).
3) уравнение медианы, проведённой из вершины А(15;9).
Находим координаты точки М - середины стороны ВС:
B(-1;-3), C(6;21).
М((-1+6)/2=2,5; (-3+21)/2=9) = (2,5; 9).
АМ: (х -15)/(-12,5) = (у - 9)/0.
4) площадь треугольника. (дана в пункте 2).
Сделать чертёж.
(1/3)*x^2+2x+4 = 10+x
(1/3)*x^2 + x - 6 = 0 | * 3
xx + 3x - 18 = 0
D = 9 + 4*18 = 81
x1, 2 = (-3+-9)/2
x1 = -6
x2 = 3
Далее нужно найти определенный интеграл A от 10+x при х от -6 до 3, определенный интеграл B от 1/3x^2+2x+4 при х от -6 до 3, их разность и будет искомой площадью фигуры:
Интеграл (1/3)*x^2+2x+4 = x*x*x/9 + x*x + 4x + C
(3 + 9 + 12) - (-24 + 36 - 24) = 24 + 12 = 36
Интеграл 10+x = x*x/2 + 10x + C
36/2 - 60 = -42
3*3/2+30 + 42 = 76,5
76,5 - 36 = 40,5
ответ: 40.5 кв. ед.
2) В условии небольшая ошибка, -2 - 4 - x^2 следует понимать как -2 - 4x - x^2, иначе решений нет, т. к. площадь пересечения равна нулю.
Найдем точки пересечения:
x^2 + 2x + 2 = -2 - 4x - x^2
2x^2 + 6х + 4 = 0
хх + 3х + 2 = 0
В = 9 - 8 = 1
x1,2 = (-3 +- 1)/2
x1 = -2
x2 = -1
График функции -2-4*x-x*x находится выше.
Неопределенный интеграл от -2-4*x-x*x равен -2x - 2x*x - x*x*x/3 + C.
При х = -1: 2 - 2 + 1/3 = 1/3.
При х = -2: 4 - 8 + 8/3 = -4 + 8/3
1/3 - (-4 + 8/3) = 4 - 7/3 = 5/3.
Неопределенный интеграл от x^2+2x+2 равен х*х*х/3 + х*х + 2х + С.
При х = -1: -1/3 + 1 - 2 = -1/3 - 1.
При х = -2: -8/3 + 4 - 4 = -8/3
-1/3 - 1 + 8/3 = 7/3 - 3/3 = 4/3
5/3 - 4/3 = 1/3
ответ: 1/3 кв. ед.