Приведи дроби х 3 1 24 в | 2х2 + 28х х2 – 196 к общему знаменателю 2х3 – 392x. ответ: 3 A х 2x3 392x А = 1 B 2х2 + 28х 2x3 – 392x В = V X4 С х2 - 196 2х3 – 392x
1) Определить, при каких значениях a и b многочлен x³+ax²+2x+b делится на x²+x+1 делим : (x³+ax²+2x+b) / (x²+x+1) x³+x² +x x+(a-1) (a-1)x²+x+b (a-1)x²+(a-1)x+(a-1) х(2-a)+b-a+1 {2-a = 0 {b-a+1=0 a=2 b=1 x³+2x²+2x+1= (x+1)(x²+x+1)
2) х скорость точки, движущейся равномерно по прямой 630/х время за которое точка бы 630м со скоростью х (х+3) скорость при увеличении скорости на 3 м/с 630/(х+3) время за которое точка бы 630м при увеличении скорости на 3 м/с 630/x -280 время, сокращается на 280 c 630/x -1 время, сокращается на 1 c время, сокращается не меньше, чем на 1 с и не более, чем на 280c: 630/(х+3) ≤ 630/x -1 время, сокращается не меньше, чем на 1 с 630/x -280 ≤ 630/(х+3) время, сокращается не более, чем на 280 c 630/(х+3) ≤ (630-x)/x 630x ≤ (630-x)(х+3) 630x ≤ 630x+3*630 - x²-3x 0 ≤ 1890 - x²-3x x²+3x-1890 ≤ 0 630/x -280 ≤ 630/(х+3) (630-280x)/x ≤ 630/(х+3) (630-280x)(х+3) ≤ 630x 630х+3*630-280x²-3*280x ≤ 630x 1890-280x²-840x ≤ 0 280x²+840x-1890 ≥ 0 28x²+84x-189 ≥ 0 4x²+12x-27 ≥ 0 решим систему: {x²+3x-1890 ≤ 0 {4x²+12x-27 ≥ 0 x²+3x-1890 ≤ 0 найдём корни x1 = - 45 скорость не может быть < 0 x2 = 42 x - 42 ≤ 0 x ≤ 42 м/сек 4x²+12x-27 ≥ 0 найдём корни x1 = -4,5 скорость не может быть < 0 x2 = 1,5 x-1,5 ≥ 0 x ≥ 1,5 м/cек ответ: x скорость точки изменяется пределах: 1,5 м/сек ≤ х ≤ 42 м/сек
7 = (-7) * (-1) = (-1) * (-7) = 1 * 7 = 7 * 1 Так как x и (x + y) по условию целые, то можно просто разлагать правую часть уравнения (т.е. 7) на 2 множителя всеми возможными а затем решать получающиеся системы уравнений. Например, 7 = (-7) * (-1) доставляет систему {x = -7, x + y = -1}, откуда (x, y) = (-7, 6). Аналогично {x = -1, x + y = -7}: (-1, -6) {x = 1, x + y = 7}: (1, 6) (x = 7, x + y = 1): (7, -6)
ответ. (-7, 6), (-1, -6), (1, 6), (7, -6) При переписывании из ответов у вас закралась ошибка - вместо (-7, 6) написана пара, не являющаяся решением - (-7, -6).
делим :
(x³+ax²+2x+b) / (x²+x+1)
x³+x² +x x+(a-1)
(a-1)x²+x+b
(a-1)x²+(a-1)x+(a-1)
х(2-a)+b-a+1
{2-a = 0
{b-a+1=0
a=2
b=1
x³+2x²+2x+1= (x+1)(x²+x+1)
2)
х скорость точки, движущейся равномерно по прямой
630/х время за которое точка бы 630м со скоростью х
(х+3) скорость при увеличении скорости на 3 м/с
630/(х+3) время за которое точка бы 630м при увеличении скорости на 3 м/с
630/x -280 время, сокращается на 280 c
630/x -1 время, сокращается на 1 c
время, сокращается не меньше, чем на 1 с и не более, чем на 280c:
630/(х+3) ≤ 630/x -1 время, сокращается не меньше, чем на 1 с
630/x -280 ≤ 630/(х+3) время, сокращается не более, чем на 280 c
630/(х+3) ≤ (630-x)/x
630x ≤ (630-x)(х+3)
630x ≤ 630x+3*630 - x²-3x
0 ≤ 1890 - x²-3x
x²+3x-1890 ≤ 0
630/x -280 ≤ 630/(х+3)
(630-280x)/x ≤ 630/(х+3)
(630-280x)(х+3) ≤ 630x
630х+3*630-280x²-3*280x ≤ 630x
1890-280x²-840x ≤ 0
280x²+840x-1890 ≥ 0
28x²+84x-189 ≥ 0
4x²+12x-27 ≥ 0
решим систему:
{x²+3x-1890 ≤ 0
{4x²+12x-27 ≥ 0
x²+3x-1890 ≤ 0 найдём корни
x1 = - 45 скорость не может быть < 0
x2 = 42
x - 42 ≤ 0
x ≤ 42 м/сек
4x²+12x-27 ≥ 0 найдём корни
x1 = -4,5 скорость не может быть < 0
x2 = 1,5
x-1,5 ≥ 0
x ≥ 1,5 м/cек
ответ:
x скорость точки изменяется пределах:
1,5 м/сек ≤ х ≤ 42 м/сек
Так как x и (x + y) по условию целые, то можно просто разлагать правую часть уравнения (т.е. 7) на 2 множителя всеми возможными а затем решать получающиеся системы уравнений. Например, 7 = (-7) * (-1) доставляет систему
{x = -7, x + y = -1}, откуда (x, y) = (-7, 6). Аналогично
{x = -1, x + y = -7}: (-1, -6)
{x = 1, x + y = 7}: (1, 6)
(x = 7, x + y = 1): (7, -6)
ответ. (-7, 6), (-1, -6), (1, 6), (7, -6)
При переписывании из ответов у вас закралась ошибка - вместо (-7, 6) написана пара, не являющаяся решением - (-7, -6).