№22.
36 мин = 0,6 ч
20 · 0,6 = 12 (км) - проехал 2-ой велосипедист, пока 1-ый был на остановке.
120 - 12 = 108 (км) - расстояние одновременного движения велосипедистов.
10 + 20 = 30 (км/ч) - скорость сближения.
108 : 30 = 3,6 (ч) - время одновременного движения велосипедистов.
3,6 + 0,6 = 4,2 (ч) - время движения 2-ого велосипедиста.
20 · 4,2 = 84 (км) - проехал 2-ой велосипедист до встречи с 1-ым.
ответ: 84 км.
График: (см. фото)
Таблица точек:
x -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
y 36,4 24,7 15,2 7,8 2,7 0 0 2 0 -4 0 8,2 18,7 31,1
При каких значениях m прямая y = m имеет с графиком однц общую точку:
m = - 4
Дано: ∆АВС
EF║AB; PS║BC; KM║AC;
r₁; r₂; r₃ - радиусы вписанных окружностей в ∆KPO; ∆OFM; ∆EOS.
Найти R - радиус окружности, вписанной в ∆АВС
Решение.
1)
Пусть
а - основание ∆KPO;
b - основание ∆EOS.
c - основание ∆OFM.
Но
а = КО = АЕ, как противоположные стороны параллелограмма АКОЕ.
с = ОМ = SC, как противоположные стороны параллелограмма SOMC.
Получаем
(a+b+c) - основание АС у ∆АВС.
2)
Все три внутренних треугольника подобны между собой и подобны данному ∆АВС, т.к. их соответственные стороны параллельны.
В в подобных треугольниках соответствующие стороны и все соответствующие линии пропорциональны.
Из подобия следуют три пропорциональности:
а/(a+b+c)=r₁/R;
b/(a+b+c)=r₃/R;
c/(a+b+c)=r₂/R;
Сложим эти пропорции.
а/(a+b+c) + b/(a+b+c) + c/(a+b+c)= r₁/R + r₃/R + r₂/R;
(a+b+c)/(a+b+c) = (r₁+r₂+r₃)/R;
1 = (r₁+r₂+r₃)/R;
R = (r₁+r₂+r₃).
ответ: R = r₁+r₂+r₃.
№22.
36 мин = 0,6 ч
20 · 0,6 = 12 (км) - проехал 2-ой велосипедист, пока 1-ый был на остановке.
120 - 12 = 108 (км) - расстояние одновременного движения велосипедистов.
10 + 20 = 30 (км/ч) - скорость сближения.
108 : 30 = 3,6 (ч) - время одновременного движения велосипедистов.
3,6 + 0,6 = 4,2 (ч) - время движения 2-ого велосипедиста.
20 · 4,2 = 84 (км) - проехал 2-ой велосипедист до встречи с 1-ым.
ответ: 84 км.
График: (см. фото)
Таблица точек:
x -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
y 36,4 24,7 15,2 7,8 2,7 0 0 2 0 -4 0 8,2 18,7 31,1
При каких значениях m прямая y = m имеет с графиком однц общую точку:
m = - 4
Дано: ∆АВС
EF║AB; PS║BC; KM║AC;
r₁; r₂; r₃ - радиусы вписанных окружностей в ∆KPO; ∆OFM; ∆EOS.
Найти R - радиус окружности, вписанной в ∆АВС
Решение.
1)
Пусть
а - основание ∆KPO;
b - основание ∆EOS.
c - основание ∆OFM.
Но
а = КО = АЕ, как противоположные стороны параллелограмма АКОЕ.
с = ОМ = SC, как противоположные стороны параллелограмма SOMC.
Получаем
(a+b+c) - основание АС у ∆АВС.
2)
Все три внутренних треугольника подобны между собой и подобны данному ∆АВС, т.к. их соответственные стороны параллельны.
В в подобных треугольниках соответствующие стороны и все соответствующие линии пропорциональны.
Из подобия следуют три пропорциональности:
а/(a+b+c)=r₁/R;
b/(a+b+c)=r₃/R;
c/(a+b+c)=r₂/R;
Сложим эти пропорции.
а/(a+b+c) + b/(a+b+c) + c/(a+b+c)= r₁/R + r₃/R + r₂/R;
(a+b+c)/(a+b+c) = (r₁+r₂+r₃)/R;
1 = (r₁+r₂+r₃)/R;
R = (r₁+r₂+r₃).
ответ: R = r₁+r₂+r₃.