Приведи дроби x2x2−y2 и x−y8x+8y к общему знаменателю. Выбери правильный вариант (варианты) ответа:
8x28(x+y)(x−y) иx2−y28(x+y)(x−y)
8x28x2−8y2 иx2−y28x2−8y2
8x2x2−y2 иx2−2xy+y2x2−y2
8x28(x+y)(x−y) иx2−2xy+y28(x+y)(x−y)
8x28(x2−y2) иx2−2xy+y28(x2−y2)
другой ответ
8x28(x+y)(x−y) иx2−2xy−y28(x+y)(x−y)
Партию примут, если возьмут 50 изделий и они все будут нормальными. Вероятность
Р=95/100*94/99*93/98...46/51
После сокращения остаётся:
Р=(50*49*48*47*46)/ (100*99*98*97*96=
50/100*49/98*48/96* (47*46)/(99*97)=
(1/2)^3*2167/9603=2167/76824
2) В одной урне 5 Б+3 Ч,
в другой 4 Б+4 Ч.
Вынимаем шар, он оказался Б.
Если 1 шар был из 1 урны, то осталось (4 Б+3 Ч) и (4 Б+4 Ч).
Вынимаем 2 шар.
Если он из 1 урны, то
р1=1/2*4/7=4/14
Если он из 2 урны, то
p2=1/2*4/8=4/16
Вероятность, что он белый
P(1)=p1+p2=4/14+4/16=60/112
Если 1 шар был из 2 урны, то осталось (5 Б+3 Ч) и (3 Б+4 Ч).
Вынимаем 2 шар.
Если он из 1 урны, то
p3=1/2*5/8=5/16
Если он из 2 урны, то
p4=1/2*3/7=3/14
Вероятность, что он белый
P(2)=5/16+3/14=83/112
Но 1 шар мог быть из 1 или 2 урны с равной вер-тью 1/2.
P=1/2*P(1)+1/2*P(2)=
1/2*60/112+1/2*83/112=143/224
Хватит.
Объяснение:
Сначала найдем, сколько скотча Игорь потратил на упаковку 390 маленьких коробок:
390 * 50 = 19500 см - именно столько скотча в 3 1/4 рулонах.
Теперь найдем, сколько ему потребуется для упаковки 420 коробок по 70 см каждая.
420 * 70 = 29400 см.
Чтобы узнать, хватит ли ему пяти рулонов, нужно найти, сколько скотча в четырех рулонах. Для этого разделим 19500 на 3 1/4, и найдем, сколько скотча в одном рулоне.
19500 / 3,25 = 6000 см
Соответственно, в пяти будет 6000 * 5 = 30000 см.
30000 > 29400, значит 5 рулонов ему хватит.