Не совсем понятна эта запись, и в чем надо Если запись трактовать как "тройное" уравнение, то оно не имеет решения. Действительно, первое равенство (x-2)^2+8x=(x-2)^2 может выполняться лишь при х=0. Действительно, убирая из левой и правой частей одинаковый член (x-2)^2, получаем: 8х = 0, отсюда х=0. Второе уравнение (x-2)^2=(x-1)(x-1) не может выполняться при любом значении х. Действительно, записав в виде квадратов, получаем: (x-2)^2=(x-1)^2. Показатели степени равны. Значит, основания тоже должны быть равны. Но они не равны при любом значении х: х-2 ≠ х-1
Построим высоту СН к стороне АВ. в прямоугольном треугольнике СВН угол В = 45 градусов (по условию), тогда угол ВСН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = СН. известно, что ВС = 6, пусть АН = ВН = х, тогда по теореме Пифагора ВС^2 = ВН^2 + СН^2 36 = х^2 + x^2; 36 = 2x^2; x^2 = 18; х = корень из 18;
треугольник АНС - прямоугольный. угол А = 60 градусов (по условию), тогда угол НСА = 90 - 60 = 30 градусов. пусть АС = 2х, тогда АН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы). по теореме Пифагора АС^2 = АН^2 + НС^2 4х^2 = 18 + х^2; 4х^2 - х^2 = 18; 3х^2 = 18; х^2 = 6; х = корень из 6; тогда Ас = 2х = 2 корня из 6 ответ: 2 корня из 6
Действительно, первое равенство (x-2)^2+8x=(x-2)^2 может выполняться лишь при х=0. Действительно, убирая из левой и правой частей одинаковый член (x-2)^2, получаем: 8х = 0, отсюда х=0.
Второе уравнение (x-2)^2=(x-1)(x-1) не может выполняться при любом значении х. Действительно, записав в виде квадратов, получаем:
(x-2)^2=(x-1)^2. Показатели степени равны. Значит, основания тоже должны быть равны. Но они не равны при любом значении х: х-2 ≠ х-1
в прямоугольном треугольнике СВН угол В = 45 градусов (по условию), тогда угол ВСН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = СН.
известно, что ВС = 6, пусть АН = ВН = х,
тогда по теореме Пифагора ВС^2 = ВН^2 + СН^2
36 = х^2 + x^2; 36 = 2x^2; x^2 = 18; х = корень из 18;
треугольник АНС - прямоугольный.
угол А = 60 градусов (по условию), тогда угол НСА = 90 - 60 = 30 градусов.
пусть АС = 2х, тогда АН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы).
по теореме Пифагора АС^2 = АН^2 + НС^2
4х^2 = 18 + х^2; 4х^2 - х^2 = 18; 3х^2 = 18; х^2 = 6; х = корень из 6;
тогда Ас = 2х = 2 корня из 6
ответ: 2 корня из 6