Допустимые значения переменной "х" - это те значения, которые брать можно. А что значит: можно? Когда говорят про допустимые значения переменной "х", то имеют в виду такие значения, при которых данный пример решается ( можно вычислить ответ. И мы должны помнить, что иногда действия выполнить нельзя (делить на 0 нельзя и т.д.)) а)(5у -8)/11 в этом выражение есть умножение, вычитание и деление на 11. Все эти действия выполняются при любом "у" ответ: у - любое б)25/(у - 9) В этом выражении есть вычитание и деление. вычитание можно выполнить при любом "у", а вот делить на 0 нельзя. ответ: у ≠ 9 в) (у² +1)/(у² -2у) И здесь есть деление. посмотрим когда знаменатель = 0 у² - 2у = 0 у(у -2) = 0 у = 0 или у - 2 = 0 у = 2 ответ: у ≠ 0 ; у ≠ 2
‥・Здравствуйте, tima0604! ・‥
• ответ:
Упрощённым выражением данного примера является решение -11+√21. (Альтернативный Вид: ≈ -6,41742.)
• Как и почему?
Для того, чтобы нам проверить правильность нашего ответа, то мы должны делать следующее:
• 1. Упростить корень √12: (√7-2√3)×(√7+3√3).
• 2. Перемножить выражения в скобках, то есть, раскрыть их: 7+3√21-2√21-18.
• 3. Вычислить разность чисел 7 и 18: 7-18=-11 → -11+3√21-2√21.
• 4. Привести подобные члены 3√21 и 2√21: -11+√21.
• Вывод: Таким образом, у нас в ответе получается корень -11+√21, а Альтернативный Вид этого корня является примерно -6,41742.
‥・С уважением, Ваша GraceMiller! :) ・‥
а)(5у -8)/11 в этом выражение есть умножение, вычитание и деление на 11. Все эти действия выполняются при любом "у"
ответ: у - любое
б)25/(у - 9)
В этом выражении есть вычитание и деление. вычитание можно выполнить при любом "у", а вот делить на 0 нельзя.
ответ: у ≠ 9
в) (у² +1)/(у² -2у)
И здесь есть деление.
посмотрим когда знаменатель = 0
у² - 2у = 0
у(у -2) = 0
у = 0 или у - 2 = 0
у = 2
ответ: у ≠ 0 ; у ≠ 2