Пусть t(ч) — время, за которое Пончик съедает три плюшки, x(км/ч) — скорость автобуса. В момент времени, когда мимо Пончика проехал автомобиль, автобус находился от него на расстоянии 2xt км, а мотоцикл — на расстоянии 30t км. Cпустя a часов, в тот момент времени, когда мимо Сиропчика проехал мотоцикл, автомобиль находился от него на расстоянии 60t км, а автобус — на расстоянии 2xt км от мотоцикла, следовательно, на расстоянии 2xt – 60t км от автомобиля. Сравнивая расстояния, пройденные автомобилем и мотоциклом получаем уравнение a(60 – 30) = 60t + 30t, откуда , а сравнивая расстояния, пройденные автобусом и автомобилем, получаем уравнение a(60 – x) = (2xt – (2xt – 60t)) = 60t, откуда .
Смотри задача нестандартная, поэтому все дело в понимании.
Пусть х чел ходит на шахматы, тогда 2х чел не ходит на шахматы, получаем
х+2х= от 20 до 30
С другой стороны,пусть у чел ходит на шашки, тогда 3у чел не ходит на шашки, получаем:
у+3у= от 20 до 30
Эти два уравнения должны выполнять одновременно, то есть мы должны найти только одно число от 20 до 30, при котором оба условия 3х=(20;30) и 4у=(20;30) выполняются одновременно. Такое число только одно - это 24.
Пусть t(ч) — время, за которое Пончик съедает три плюшки, x(км/ч) — скорость автобуса. В момент времени, когда мимо Пончика проехал автомобиль, автобус находился от него на расстоянии 2xt км, а мотоцикл — на расстоянии 30t км. Cпустя a часов, в тот момент времени, когда мимо Сиропчика проехал мотоцикл, автомобиль находился от него на расстоянии 60t км, а автобус — на расстоянии 2xt км от мотоцикла, следовательно, на расстоянии 2xt – 60t км от автомобиля. Сравнивая расстояния, пройденные автомобилем и мотоциклом получаем уравнение a(60 – 30) = 60t + 30t, откуда , а сравнивая расстояния, пройденные автобусом и автомобилем, получаем уравнение a(60 – x) = (2xt – (2xt – 60t)) = 60t, откуда .
ответ: 40 км/ч.
Смотри задача нестандартная, поэтому все дело в понимании.
Пусть х чел ходит на шахматы, тогда 2х чел не ходит на шахматы, получаем
х+2х= от 20 до 30
С другой стороны,пусть у чел ходит на шашки, тогда 3у чел не ходит на шашки, получаем:
у+3у= от 20 до 30
Эти два уравнения должны выполнять одновременно, то есть мы должны найти только одно число от 20 до 30, при котором оба условия 3х=(20;30) и 4у=(20;30) выполняются одновременно. Такое число только одно - это 24.
Значит число учеников 24.