работы на компетентностной основе: по осознанному чтению, грамотности, естественнонаучной грамотности и решению проблем. для проведения контрольных работ приобретены сборники контрольно-измерительных материалов, разработанные специально для учащихся школ города специалистами и партнерами ано «центр развития молодежи» (г. екатеринбург). для учащихся направлены на проверку: способности результативно использовать языковые средства для решения коммуникативных, информационных, в том числе учебных (осознанное чтение); способности осуществлять действия, вести рассуждения и использовать средства для решения практических, исследовательских и познавательных проблем ( грамотность); способности делать основные наблюдения на экспериментах и выводы о свойствах окружающего мира и изменениях, которые могут вносить в окружающий мир действия человека, а также применять полученные знания для объяснения природных явлений и решения практических (естественнонаучная грамотность); способности использовать познавательные умения для разрешения межпредметных реальных проблем, в которых способ решения с первого взгляда явно не определяется. умения, необходимые для решения проблемы, формируются в разных учебных областях, а не только в рамках одной из них — , естественнонаучной или чтения (решение
1. У равнобедренного треугольника углы при основании равны, поэтому угол при основании не может быть равен 108°, значит угол при вершине равнобедренного треугольника равен 108°, тогда углы при основании:
α = (180° - 108°)/2 = 36°
ответ: 36°.
2) Полное условие. В треугольнике CDE проведена биссектриса CF, угол D=68*,угол E=32*. Найдите угол CFD.
Сумма внутренних углов треугольника равна 180°, поэтому
∠C = 180° - (∠D + ∠E) = 180° - (68°+32°) = 100°
Так как CF - биссектриса, то ∠DCF = ∠FCE = 0.5∠C = 50°
1. У равнобедренного треугольника углы при основании равны, поэтому угол при основании не может быть равен 108°, значит угол при вершине равнобедренного треугольника равен 108°, тогда углы при основании:
α = (180° - 108°)/2 = 36°
ответ: 36°.
2) Полное условие. В треугольнике CDE проведена биссектриса CF, угол D=68*,угол E=32*. Найдите угол CFD.
Сумма внутренних углов треугольника равна 180°, поэтому
∠C = 180° - (∠D + ∠E) = 180° - (68°+32°) = 100°
Так как CF - биссектриса, то ∠DCF = ∠FCE = 0.5∠C = 50°
Рассмотрим треугольник CDF: ∠CFD = 180° - (∠CDF + ∠DCF)=62°
ответ: 62°