sinx+sin
2
(x)+sin
3
(x)=cosx+cos
x+cos
x
(sinx-cosx)+(sin^{2}x-cos^{2}x)+(sin^{3}x-cos^{3}x)=0(sinx−cosx)+(sin
x−cos
x)+(sin
x)=0
(sinx-cosx)+(sinx-cosx)(sinx+cosx)+(sinx-cosx)(sin^{2}x+sinx*cosx+cos^{2}x)=0(sinx−cosx)+(sinx−cosx)(sinx+cosx)+(sinx−cosx)(sin
x+sinx∗cosx+cos
(sinx-cosx)(1+sinx+cosx+1+sinx*cosx)=0(sinx−cosx)(1+sinx+cosx+1+sinx∗cosx)=0
(sinx-cosx)(2+sinx+cosx+sinx*cosx)=0(sinx−cosx)(2+sinx+cosx+sinx∗cosx)=0
1) sinx=cosxsinx=cosx
tgx=1tgx=1
x= \frac{ \pi }{4} + \pi kx=
4
π
+πk , k∈Z
2) 2+sinx+cosx+sinx*cosx=02+sinx+cosx+sinx∗cosx=0
(1+cosx)(1+sinx)=-1(1+cosx)(1+sinx)=−1 - решений нет, т.к.:
\left \{ {1+cosx \geq 0} \atop {1+sinx \geq 0}} \right.
Левая часть не может быть отрицательной не при каких х.
ответ: x= \frac{ \pi }{4} + \pi kx=
Объяснение:
.,,
sinx+sin
2
(x)+sin
3
(x)=cosx+cos
2
x+cos
3
x
(sinx-cosx)+(sin^{2}x-cos^{2}x)+(sin^{3}x-cos^{3}x)=0(sinx−cosx)+(sin
2
x−cos
2
x)+(sin
3
x−cos
3
x)=0
(sinx-cosx)+(sinx-cosx)(sinx+cosx)+(sinx-cosx)(sin^{2}x+sinx*cosx+cos^{2}x)=0(sinx−cosx)+(sinx−cosx)(sinx+cosx)+(sinx−cosx)(sin
2
x+sinx∗cosx+cos
2
x)=0
(sinx-cosx)(1+sinx+cosx+1+sinx*cosx)=0(sinx−cosx)(1+sinx+cosx+1+sinx∗cosx)=0
(sinx-cosx)(2+sinx+cosx+sinx*cosx)=0(sinx−cosx)(2+sinx+cosx+sinx∗cosx)=0
1) sinx=cosxsinx=cosx
tgx=1tgx=1
x= \frac{ \pi }{4} + \pi kx=
4
π
+πk , k∈Z
2) 2+sinx+cosx+sinx*cosx=02+sinx+cosx+sinx∗cosx=0
(1+cosx)(1+sinx)=-1(1+cosx)(1+sinx)=−1 - решений нет, т.к.:
\left \{ {1+cosx \geq 0} \atop {1+sinx \geq 0}} \right.
Левая часть не может быть отрицательной не при каких х.
ответ: x= \frac{ \pi }{4} + \pi kx=
4
π
+πk , k∈Z
Объяснение:
.,,
3х²-2у² = 25
х²-у²+у = 5 умножим на -3 -3х²+3у²-3у = -15
3х²-2у² = 25
у²-3у = 10
Получаем квадратное уравнение:
у²-3у-10 = 0
Квадратное уравнение, решаем относительно y:
Ищем дискриминант:D=(-3)^2-4*1*(-10)=9-4*(-10)=9-(-4*10)=9-(-40)=9+40=49;
Дискриминант больше 0, уравнение имеет 2 корня:
y_1=(√49-(-3))/(2*1)=(7-(-3))/2=(7+3)/2=10/2=5;
y_2=(-√49-(-3))/(2*1)=(-7-(-3))/2=(-7+3)/2=-4/2=-2.
х находим из 1 уравнения х = +-√((25+2у²) / 3)
х₁,₂ = +-√((25+2*5²) / 3) =+-√(75 / 3) = +-√25 = +-5.
х₃,₄ = +-√((25+2*(-2)²) / 3 = +-√(33 / 3) = +-√11.