Очень найдите ( sin5α + sinα , если sinα = 1/√5
"решение" : * * * sinα +sinβ =2sin( (α+β)/2 ) *cos( (α - β)/2 ) * * *
sin5α + sinα = 2*sin ( (5α +α)/2 ) *cos ( (5α -α)/2 ) =
2*sin3α*cos2α =2*(3sinα - 4sin³α)* (1 -2sin²α ) = || sinα = 1/√5 || =
=2*(3 /√5 - 4 / 5√5)* (1 - 2* 1/5 ) = 2*( ( 3*5 - 4) / 5√5 )*( (5*1 -2)5 ) =
=2* (11 / 5√5) * (3/5) = 66/25√5 = 66√5 / 125
ответ: 66√5 / 125
* * * P.S. sin3α =sin(2α+α) = sin2α*cosα+ cos2α*sinα =
2sinα*cosα*cosα + (cos²α -sin²α)*sinα =sinα *(2cos²α + cos²α - sin²α) =
sinα *(3cos²α - sin²α) = sinα *( 3(1 -sin²α) - sin²α ) = 3sinα - 4sin³α * * *
Очень найдите ( sin5α + sinα , если sinα = 1/√5
"решение" : * * * sinα +sinβ =2sin( (α+β)/2 ) *cos( (α - β)/2 ) * * *
sin5α + sinα = 2*sin ( (5α +α)/2 ) *cos ( (5α -α)/2 ) =
2*sin3α*cos2α =2*(3sinα - 4sin³α)* (1 -2sin²α ) = || sinα = 1/√5 || =
=2*(3 /√5 - 4 / 5√5)* (1 - 2* 1/5 ) = 2*( ( 3*5 - 4) / 5√5 )*( (5*1 -2)5 ) =
=2* (11 / 5√5) * (3/5) = 66/25√5 = 66√5 / 125
ответ: 66√5 / 125
* * * P.S. sin3α =sin(2α+α) = sin2α*cosα+ cos2α*sinα =
2sinα*cosα*cosα + (cos²α -sin²α)*sinα =sinα *(2cos²α + cos²α - sin²α) =
sinα *(3cos²α - sin²α) = sinα *( 3(1 -sin²α) - sin²α ) = 3sinα - 4sin³α * * *
а)3a-15b = 3(a-5b);
б)5x-2xy = x(5-2y);
в)7mn+7mk = 7m(n+k);
г)24x²y+36xy² = 12xy(2x+3y);
д)-4x^8+18x^15 = 2x^8(9x^7-2);
е)3x⁴-6x³+9x^5 = 3x³(x-2+3x²).
N°2
а)xy-xz+my-mz = x(y-z)+m(y-z) = (x+m)(y-z);
б)4a-4b+ca-cb = 4(a-b)+c(a-b) = (4+c)(a-b);
в)а²+10а+25 = (a+5)²;
г)4х²-4х+1 = (2x-1)²;
д)х²-100 = x²-10² = (x-10)(x+10);
е)36-81b² = 6²-(9b)² = (6-9b)(6+9b);
ж)9х²-64у² = (3x)²-(8y)² = (3x-8y)(3x+8y);
з)m^8-n⁴ = (m⁴)²-(n²)² = (m⁴-n²)(m⁴+n²).
№3
а)(4х-3)²-5² = 16x²-24x+9-25 = 16x²-24x-16 = 8(2x²-3x-2);
б)(3х-5)²-(х+3)² = 9x²-30x+25-(x²+6x+9) = 9x²-30x+25-x²-6x-9 = 8x² - 36x + 16 = 4(2x²-9x+4). ^ – это степень, ставлю потому что выше 4 степени поставить не позволяют возможности планшета.