A) Область определения функции D(х)=R Область значений E(у)=[0; +∞) Нули функции: х=0 Промежутки знакопостоянства: у>0 при х∈(-∞;0)∪(0+∞) Функция убывает при х∈(-∞; 0). Функция возрастает при х∈(0; +∞) Функция ограничена снизу: у≥0 Экстремумы функии: у[min]=0 Функция непрерывна. Функция чётная(график симметричен относительно оси Оу) Функция непериодична. б) Область определения функции D(х)=R Область значений E(у)=(-∞; 0) Нули функции: х=0 Промежутки знакопостоянства: у<0 при х∈(-∞;0)∪(0+∞) Функция убывает при х∈(0; +∞). Функция возрастает при х∈(-∞; 0) Функция ограничена сверху: у≤0 Экстремумы функии: у[max]=0 Функция непрерывна. Функция чётная(график симметричен относительно оси Оу) Функция непериодична.
Область определения функции D(х)=R
Область значений E(у)=[0; +∞)
Нули функции: х=0
Промежутки знакопостоянства: у>0 при х∈(-∞;0)∪(0+∞)
Функция убывает при х∈(-∞; 0).
Функция возрастает при х∈(0; +∞)
Функция ограничена снизу: у≥0
Экстремумы функии: у[min]=0
Функция непрерывна.
Функция чётная(график симметричен относительно оси Оу)
Функция непериодична.
б)
Область определения функции D(х)=R
Область значений E(у)=(-∞; 0)
Нули функции: х=0
Промежутки знакопостоянства: у<0 при х∈(-∞;0)∪(0+∞)
Функция убывает при х∈(0; +∞).
Функция возрастает при х∈(-∞; 0)
Функция ограничена сверху: у≤0
Экстремумы функии: у[max]=0
Функция непрерывна.
Функция чётная(график симметричен относительно оси Оу)
Функция непериодична.
1) любые 2) любые 5) x ∈ (-∞;-6) ∪ (-6;6) ∪ (6;+∞) 6) любые 9) x ∈ (-∞;-5) ∪ (-5;+∞) 10) с ∈ (-∞;-4) ∪ (-4;3) ∪ (3;+∞)
Объяснение:
Дробь имеет смысл, если знаменатель не равен нулю.
Значит задача состоит в том, что мы должны найти значения икса, при которых знаменатель обращается в нуль.
1) знаменатель = 1 -> имеет смысл всегда
2) знаменатель = 7 -> имеет смысл всегда
5) x^2 - 36 = 0
x^2 = 36
x = +6 ; -6;
при x = +6 и x = -6 выражение не имеет смысл.
6) x^6 + 1 = 0
x^6 = -1
степень 6 кратна двум, это значит, что любое число (даже отрицательное) в итоге будет ≥ 0.
Например (-1)^2 = 1.
9) x^2 + 10x + 25 = 0
формула дискриминанта: D = b^2 - 4ac.
D = 10^2 - 4*1*25 = 100 - 100 = 0
D = 0 => x = (-b)/2 = -10/2 = -5
При x = -5 выражение не имеет смысла.
10) выражение, очевидно, не имеет смысла при c - 3 =0 и с + 4 = 0
с = 3 и с = -4.