Объяснение:
Составьте квадрат суммы двух одночленов.ответ запишите в виде степени и в виде многочлена.(2x + 5)² = 4x² + 20x + 25
(x + 3)² = x² + 6x + 9
(6a + 7b)² = 36a² + 84ab + 49b²
(2k + 3)² = 4k² + 12k + 9
Пользуясь формулой квадрата суммы,вычислите значение выражения:10,2² = (10+0,2)² = 100 + 4 + 0,04 = 104,04
104²=(100+4)² = 10000 + 800 + 16 = 10816
32² = (30 + 2)² = 900 + 120 + 4 = 1024
51² = (50 + 1)² = 2500 + 100 + 1 = 2601
ПРИМЕЧАНИЕ:все числа во второй степени.
Представьте многочлен в виде квадрата суммы:4a²+4ab+b² = (2a + b)²
k²+2kb+b² = (k + b)²
1+2m+m² = (1 + m)²
1/4+p+p² = (1/2 + p)²
ПРИМЕЧАНИЕ:4a,b k,b m p во второй степени
1) Первые 10 простых чисел, от 2 до 29:
2357111317192329
Чтобы получить наибольшее число, нужно вычеркнуть 235 и 111. Получится
7317192329
2) Пусть сумма всех чисел в каждой строке равна а.
Тогда сумма всех чисел в таблице равна М*а.
Сумма чисел в каждом столбце тоже равна а.
Тогда сумма чисел во всей таблице равна К*а.
Но это одно и тоже число.
М*а = К*а
М = К
ЧТД.
3) 1*2+2*3+3*4+4*5+5*6+6*7+7*8+8*9+9*10+...+997*998+998*999+999*1000
Выпишем последние цифры в каждом произведении.
2 + 6 + 2 + 0 + 0 + 2 + 6 + 2 + 0 + 0 +...+ 0 + 0 + 2 + 6 + 2 + 0 =
= (2+6+2) + 0 + (2+6+2) + 0 + ... + 0 + (2+6+2) + 0 = 10 + 0 + 10 + 0 +...+ 10 + 0
Эта сумма оканчивается на 0
4) Нельзя. Количество монет, лежащих орлом вверх, всегда четное.
Сначала 0, потом 20, потом 2 (если я переверну монету, которая осталась решкой вверх, и еще 19, которые стали орлом вверх), и так далее.
Оно не может стать нечетным числом 21.
5) Число 2017 нужно написать 9 раз подряд. Тогда каждая цифра будет повторена 9 раз, и сумма цифр будет делиться на 9, и само число тоже.
Количество цифр в этом числе 4*9 = 36.
6) Сегодня среда. Послезавтра будет пятница.
День, когда "послезавтра" станет "вчера" - это суббота.
День, когда "вчера" было "завтра" - это позавчера, в понедельник.
Понедельник и суббота одинаково далеки от воскресенья - на 1 день.
Объяснение:
Составьте квадрат суммы двух одночленов.ответ запишите в виде степени и в виде многочлена.(2x + 5)² = 4x² + 20x + 25
(x + 3)² = x² + 6x + 9
(6a + 7b)² = 36a² + 84ab + 49b²
(2k + 3)² = 4k² + 12k + 9
Пользуясь формулой квадрата суммы,вычислите значение выражения:10,2² = (10+0,2)² = 100 + 4 + 0,04 = 104,04
104²=(100+4)² = 10000 + 800 + 16 = 10816
32² = (30 + 2)² = 900 + 120 + 4 = 1024
51² = (50 + 1)² = 2500 + 100 + 1 = 2601
ПРИМЕЧАНИЕ:все числа во второй степени.
Представьте многочлен в виде квадрата суммы:4a²+4ab+b² = (2a + b)²
k²+2kb+b² = (k + b)²
1+2m+m² = (1 + m)²
1/4+p+p² = (1/2 + p)²
ПРИМЕЧАНИЕ:4a,b k,b m p во второй степени
1) Первые 10 простых чисел, от 2 до 29:
2357111317192329
Чтобы получить наибольшее число, нужно вычеркнуть 235 и 111. Получится
7317192329
2) Пусть сумма всех чисел в каждой строке равна а.
Тогда сумма всех чисел в таблице равна М*а.
Сумма чисел в каждом столбце тоже равна а.
Тогда сумма чисел во всей таблице равна К*а.
Но это одно и тоже число.
М*а = К*а
М = К
ЧТД.
3) 1*2+2*3+3*4+4*5+5*6+6*7+7*8+8*9+9*10+...+997*998+998*999+999*1000
Выпишем последние цифры в каждом произведении.
2 + 6 + 2 + 0 + 0 + 2 + 6 + 2 + 0 + 0 +...+ 0 + 0 + 2 + 6 + 2 + 0 =
= (2+6+2) + 0 + (2+6+2) + 0 + ... + 0 + (2+6+2) + 0 = 10 + 0 + 10 + 0 +...+ 10 + 0
Эта сумма оканчивается на 0
4) Нельзя. Количество монет, лежащих орлом вверх, всегда четное.
Сначала 0, потом 20, потом 2 (если я переверну монету, которая осталась решкой вверх, и еще 19, которые стали орлом вверх), и так далее.
Оно не может стать нечетным числом 21.
5) Число 2017 нужно написать 9 раз подряд. Тогда каждая цифра будет повторена 9 раз, и сумма цифр будет делиться на 9, и само число тоже.
Количество цифр в этом числе 4*9 = 36.
6) Сегодня среда. Послезавтра будет пятница.
День, когда "послезавтра" станет "вчера" - это суббота.
День, когда "вчера" было "завтра" - это позавчера, в понедельник.
Понедельник и суббота одинаково далеки от воскресенья - на 1 день.