Решение: Обозначим за х-количество изюма; за у- количество груш; за z- количество чернослива Тогда согласно условию задачи: Составим уравнения: у=х+100 z/3=у х+у+z=1000 Решим данную систему уравнений: приводим к тому, чтобы в третьем уравнении была одна переменная: х-известна; у=х+100 z=3у подтавим в третье уравнение, получим; х+х+100+3у=1000 Подставим вместо у, известное нам: у=х+100 Тогда: х+х+100+3*(х+100)=1000 х+х+100+3х+300=1000 5х=600 х=120г (количество изюма) у=120+100=220г (количество груш) z=3*220=660г (количество чернослива)
Обозначим за х-количество изюма;
за у- количество груш;
за z- количество чернослива
Тогда согласно условию задачи:
Составим уравнения:
у=х+100
z/3=у
х+у+z=1000
Решим данную систему уравнений:
приводим к тому, чтобы в третьем уравнении была одна переменная:
х-известна;
у=х+100
z=3у
подтавим в третье уравнение, получим;
х+х+100+3у=1000
Подставим вместо у, известное нам: у=х+100
Тогда:
х+х+100+3*(х+100)=1000
х+х+100+3х+300=1000
5х=600
х=120г (количество изюма)
у=120+100=220г (количество груш)
z=3*220=660г (количество чернослива)
Проверка: 120+220+660=1000(г)
Биссектриса равностороннего треугольника является высотой, которая делит равносторонний треугольник на равных прямоугольных треугольника.
Биссектрису, которая является катетом прямоугольного треугольника, можно найти по Теореме Пифагора.
Сторона треугольника-гипотенуза, биссектриса делит основание равностороннего треугольника пополам:
12√3 : 2=6√3-другой катет
По теореме Пифагора:
с²=а²+b²
(12√3)²=(6√3)² +b²
b²=(12√3)² - (6√3)²=144*3 - 36*3=432 - 108=324
b=√324=18- биссектриса
ответ: Биссектриса в данном равностороннем треугольнике равна 18