Привести уравнение вида x^2-kx-m=0 к x^2=kx+m
2)Построить графики y = x^2 (парабола) и y=kx+m(прямая).
3) Найти точки пересечения этих функций. Абсциссы этих точек
являются примерными корнями данного уравнения.
4) Сделать проверку, подставив примерные корни в исходное
уравнение. Те корни, при которых получается верное равенства,
являются точными корнями.
5) Записать ответ.
1)возьмем за х-скорость первого катера
за у-скорость второго катера
найдем какое расстояние они оба за 3 часа,(т.к. они вышли одновременно) получаем 3х-км первый катер
3у-км второй катер
т.к. нам сказано, что через эти 3 часа расстояние между ними составило 96 км, мы можем составить первое уравнение: 3х+3у=96
2) т.к. скорость первого катера на 10 км/ч больше скорости второго катера, составим второе уравнение: х-у=10
составляем систему: 3х+3у=96
х-у=10
выражаем из 2 уравн. х, х=10+у -это подставляем в первое уравнение заместо х
3(10+у)+3у=96
30+3у+3у=96
6у=66
у=11, 11км/ч-скорость второго катера
у=11 подставляем во второе уравнение: х-11=10
х=21 км/ч
ответ: 21 км/ч и 11 км/ч
Грузовик за 4часа проехал 240 км. За первый час он проехал 20% всего расстояния, за второй - 3/16 остатка, за следующие два часа - оставшийся путь, причем за третий час - в 2 раза больше, чем за 4-й час . Сколько километров проезжал ла грузовик за каждый час по отдельности?
За первый час грузовик проехал
240·0,2=48 км
Осталось проехать
240-48=192 км
За второй час грузовик проехал
192·3/16=36 км
Осталось проехать
192-36=156 км
Это расстояние грузовки ехал неравномерно.
Если за 4-й час он проехал х км, то за третий - 2х
Всего
3х=156 км
х=156:3=52 км ( 4-й час)
2х=52·2=104 км (5-й час)
ответ: За первый час грузовик
проехал 48 км,
за второй 36 км
за третий 104 км
за четвертый 52 км
Проверка:
48+36+52+104=240 (км)