Привет,,, 1) {} - арифметическая прогрессия, у которой = 2,7, d = 0,1. Найдите и . 2) Найдите первый член геометрической прогрессии, если ее пятый член равен 36, а знаменатель - 2 3) Найдите сумму четырнадцати первый членов арифметической прогрессии, если = 4, d = 2
Решение Графиком функции является парабола, ветви которой направлены вверх. 1) D (f) =R , т.к. f – многочлен. 2) f(-х) = (-х)2 - 4(-х) - 5 = х2 + 4х – 5 Функция поменяла знак частично, значит, f не является ни чётной, ни нечётной. 3) Нули функции: При х = 0 у = - 5; (0;-5) при у = 0 х2 - 4х – 5 = 0 По теореме, обратной теореме Виета х1 = -1; х2 = 5 (-1;0); (5;0). 4) Найдём производную функции f: f ′(х) = 2х – 4 Найдём критические точки: f ′(х) = 0; 2х – 4 = 0; х = 2 – критическая точка f ′(х) - + f (х) 2 х min 5) Найдём промежутки монотонности: Если функция возрастает, то f ′(х) > 0 ; 2х – 4 > 0; х > 2. Значит, на промежутке (2; ∞) функция возрастает. Если функция убывает, то f ′(х) < 0; 2х – 4 < 0; х < 2. Значит, на промежутке (- ∞; 2) функция убывает. 6) Найдём координаты вершины параболы: Х =Y = 22 - 4*2 – 5 = -9 (2;-9) – координаты вершины параболы. 7) Область изменения функции Е (у) = (-9; ∞) 8) Построим график функции: у -1 2 5 -5 х
Циферблат поделён на 60 делений. Минутная стрелка проходит за 1 час 60 делений, а часовая стрелка 5 делений. Поэтому отношение скоростей движения кончиков стрелок 12 : 1
1-й раз стрелки встретятся между 2.00 и 3.00
Минутная стрелка пройдёт при этом 10 + х, а часовая х делений
(10 + х) : х = 12 : 1 ⇒ х = 10/12 деления
2-й раз стрелки встретятся между 3.00 и 4.00
Минутная стрелка пройдёт при этом 15 + х, а часовая х делений
(15 + х) : х = 12 : 1 ⇒ х = 15/12 деления
и так далее...
10-й раз стрелки встретятся между 11.00 и 12.00
От 11 .00 до момента встречи минутная стрелка пройдёт 55 + х, а часовая х делений
(55 + х) : х = 12 : 1 ⇒ х = 55/11 = 5 (делений)
И получается, что 10-й раз стрелки встретятся ровно в 12.00
От 2.00 до 12.00 проходит 10 часов. Это 60 · 10 = 600 минут
Графиком функции является парабола, ветви которой направлены вверх. 1) D (f) =R , т.к. f – многочлен. 2) f(-х) = (-х)2 - 4(-х) - 5 = х2 + 4х – 5 Функция поменяла знак частично, значит, f не является ни чётной, ни нечётной. 3) Нули функции: При х = 0 у = - 5; (0;-5) при у = 0 х2 - 4х – 5 = 0 По теореме, обратной теореме Виета х1 = -1; х2 = 5 (-1;0); (5;0). 4) Найдём производную функции f: f ′(х) = 2х – 4 Найдём критические точки: f ′(х) = 0; 2х – 4 = 0; х = 2 – критическая точка
f ′(х) - + f (х) 2 х
min 5) Найдём промежутки монотонности: Если функция возрастает, то f ′(х) > 0 ; 2х – 4 > 0; х > 2. Значит, на промежутке (2; ∞) функция возрастает. Если функция убывает, то f ′(х) < 0; 2х – 4 < 0; х < 2. Значит, на промежутке (- ∞; 2) функция убывает. 6) Найдём координаты вершины параболы: Х =Y = 22 - 4*2 – 5 = -9 (2;-9) – координаты вершины параболы.
7) Область изменения функции Е (у) = (-9; ∞) 8) Построим график функции:
у
-1 2 5 -5 х
Через 630 минут
Объяснение:
Циферблат поделён на 60 делений. Минутная стрелка проходит за 1 час 60 делений, а часовая стрелка 5 делений. Поэтому отношение скоростей движения кончиков стрелок 12 : 1
1-й раз стрелки встретятся между 2.00 и 3.00
Минутная стрелка пройдёт при этом 10 + х, а часовая х делений
(10 + х) : х = 12 : 1 ⇒ х = 10/12 деления
2-й раз стрелки встретятся между 3.00 и 4.00
Минутная стрелка пройдёт при этом 15 + х, а часовая х делений
(15 + х) : х = 12 : 1 ⇒ х = 15/12 деления
и так далее...
10-й раз стрелки встретятся между 11.00 и 12.00
От 11 .00 до момента встречи минутная стрелка пройдёт 55 + х, а часовая х делений
(55 + х) : х = 12 : 1 ⇒ х = 55/11 = 5 (делений)
И получается, что 10-й раз стрелки встретятся ровно в 12.00
От 2.00 до 12.00 проходит 10 часов. Это 60 · 10 = 600 минут
от 1.30 до 2.00 пройдёт 30 минут
Итого от 1.30 до 12.00 пройдёт 630 минут