Привет 1.Укажите значение переменной при которой дробь х-3/3х не имеет смысла.
А. Х=0 Б. Х=1/3 В. Х=1 Г. Другой вариант.
2. При каких значениях переменной алгебраическая дробь 7х-14/х^2+1 равна нулю.
А. Х=0 Б. Х=-1 В. Таких значений нет Г. Другой вариант.
2.
3.64x+x⁻¹=-16
64x+1/x+16=0
(64x²+1+16x)/x=0
x может принимать любые значения кроме 0, поэтому
64x²+16x+1=0
D=16²-4*64=256-256=0
x=-16/(2*64)=-1/8
4. Пусть скорость автобуса х км/ч, тогда скорость автомобиля 1,5х км/ч. Автобус затратил на поездку 200/х часов, а автомобиль 200/1,5х часов. Автомобиль выехал позже на 1 ч. 20 мин. или 4/3 часа. Так как автомобиль и автобус прибыли одновременно, то можно записать
200/x-200/1,5x=4/3
200*1,5-200=(4*1,5x)/3
300-200=(6x)/3
100=2x
x=100:2
x=50 км/ч - скорость автобуса.
sin7x - sin(π/2 - 13x) = 0
2 * sin0,5(7x - π/2 + 13x) * cos0,5(7x + π/2 - 13x) = 0
sin(10x - π/4) * cos(π/4 - 3x) = 0
sin(10x - π/4) = 0 или cos(π/4 - 3x) = 0
10х - π/4 = πn, n ∈ ℤ или π/4 - 3х = π/2 + πk, k ∈ ℤ
Отсюда находим х.
sinx - sin3x + sin5x = 0
(sinx + sin5x) - sin3x = 0
2 * sin0,5(x + 5x) * cos0,5(x - 5x) - sin3x = 0
2 * sin3x * cos(-2x) - sin3x = 0
sin3x * (2 * cos2x - 1) = 0
sin3x = 0 или 2 * cos2x - 1 = 0
3x = πn, n ∈ ℤ или cos2x = 0,5
3x = πn, n ∈ ℤ или х = ±π/6 + πk, k ∈ ℤ
sinx - sin2x + sin3x + sin4x = 0
(sinx + sin3x) + (sin4x - sin2x) = 0
2 * sin0,5(x + 3x) * cos0,5(x - 3x) + 2 * sin0,5(4x - 2x) * cos0,5(4x + 2x) = 0
sin2x * cos(-x) + sinx * cos3x = 0
2 * sinx * cos²x + sinx * cos3x = 0
sinx * (2cos²x + cos3x) = 0
sinx = 0 или 2cos²x + cos3x = 0
x = πn, n ∈ ℤ или 2cos²x + 4cos³x - 3cosx = 0
x = πn, n ∈ ℤ или cosx = 0 или 4cos²x + 2cosx - 3 = 0
x = πn, n ∈ ℤ или х = π/2 + πk, k ∈ ℤ или cosx = 0,25(-1 ± √13)
0,25(-1 - √13) по молулю превосходит единицу, значит cosx = 0,25(-1 + √13).
x = ±arccos(-1 + √13) + 2πm, m ∈ ℤ.