Объяснение:
Периметр прямоугольника:
P=2(a+b) , где
a - длина, см;
b - ширина, см.
Площадь 1-го квадрата:
S₁=a², где a - сторона 1-го квадрата (она же длина прямоугольника), см.
Площадь 2-го квадрата:
S₂=b², где b - сторона 2-го квадрата (она же ширина прямоугольника).
Система уравнений:
26=2(a+b); a+b=26/2; a+b=13; b=13-a; b²=(13-a)²
85=a²+b²; b²=85-a²
(13-a)²=85-a²
169-26a+a²-85+a²=0
2a²-26a+84=0 |2
a²-13a+42=0; D=169-168=1
a₁=(13-1)/2=12/2=6; b₁=13-6=7
a₂=(13+1)/2=14/2=7; b₂=13-7=6
ответ: 6 см и 7 см.
Объяснение:
Периметр прямоугольника:
P=2(a+b) , где
a - длина, см;
b - ширина, см.
Площадь 1-го квадрата:
S₁=a², где a - сторона 1-го квадрата (она же длина прямоугольника), см.
Площадь 2-го квадрата:
S₂=b², где b - сторона 2-го квадрата (она же ширина прямоугольника).
Система уравнений:
26=2(a+b); a+b=26/2; a+b=13; b=13-a; b²=(13-a)²
85=a²+b²; b²=85-a²
(13-a)²=85-a²
169-26a+a²-85+a²=0
2a²-26a+84=0 |2
a²-13a+42=0; D=169-168=1
a₁=(13-1)/2=12/2=6; b₁=13-6=7
a₂=(13+1)/2=14/2=7; b₂=13-7=6
ответ: 6 см и 7 см.
Уравнение превратится изz2+x2+y2=2015z2+x2+y2=2015
вz2+x2+y2−2015=0z2+x2+y2−2015=0
Это уравнение видаa*x^2 + b*x + c = 0
Квадратное уравнение можно решитьс дискриминанта.Корни квадратного уравнения:x1=D−−√−b2ax1=D−b2a
x2=−D−−√−b2ax2=−D−b2a
где D = b^2 - 4*a*c - это дискриминант.Т.к.a=1a=1
b=0b=0
c=y2+z2−2015c=y2+z2−2015
, тоD = b^2 - 4 * a * c =
(0)^2 - 4 * (1) * (-2015 + y^2 + z^2) = 8060 - 4*y^2 - 4*z^2
Уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
илиx1=12−4y2−4z2+8060−−−−−−−−−−−−−−−√x1=12−4y2−4z2+8060
x2=−12−4y2−4z2+8060