Y=-8x/(x²+4). 1) Так как x²+4>0 при любых значениях x, то функция определена при любых х, т.е. областью определения является вся числовая ось. 2) При x=0 y=0, т.е график пересекает координатные оси в начале координат. Других точек пересечения с осями координат нет. 3) y(-x)=-y(x), так что функция является нечётной и потому её можно исследовать только при x≥0. 4) Функция непрерывна на всей числовой оси. lim y при x⇒+∞=0. Таким образом, ось ОХ является горизонтальной асимптотой. Других асимптот нет. 5) y'=(-8*(x²+4)+8x*2x)/(x²+4)²=(8x²-32)/(x²+4)²=8*(x²-4)/(x²+4)², откуда видно, что , т.е. производная обращается в 0 при x=2 и при x=-2. При x<-2 y'>0, при -2<x<2 y'<0, при x>2 y'>0. Отсюда ясно, что точка x=-2 есть точка максимума, равного y(-2)=16/(4+4)=2, а точка x=2 есть точка минимума, равного y(2)=-16/(4+4)=-2. Эти значения одновременно являются соответственно наибольшим и наименьшим значениями функции на всей области определения.
№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
1) Так как x²+4>0 при любых значениях x, то функция определена при любых х, т.е. областью определения является вся числовая ось.
2) При x=0 y=0, т.е график пересекает координатные оси в начале координат. Других точек пересечения с осями координат нет.
3) y(-x)=-y(x), так что функция является нечётной и потому её можно исследовать только при x≥0.
4) Функция непрерывна на всей числовой оси. lim y при x⇒+∞=0. Таким образом, ось ОХ является горизонтальной асимптотой. Других асимптот нет.
5) y'=(-8*(x²+4)+8x*2x)/(x²+4)²=(8x²-32)/(x²+4)²=8*(x²-4)/(x²+4)², откуда видно, что , т.е. производная обращается в 0 при x=2 и при x=-2. При x<-2 y'>0, при -2<x<2 y'<0, при x>2 y'>0. Отсюда ясно, что точка x=-2 есть точка максимума, равного y(-2)=16/(4+4)=2, а точка x=2 есть точка минимума, равного y(2)=-16/(4+4)=-2. Эти значения одновременно являются соответственно наибольшим и наименьшим значениями функции на всей области определения.