Объяснение:
ВАРИАНТ 1.
Задание 1) у= х^2
Подставляем значения х и у в данную фунцкию:
A( 3:-9) , Где х=3, у= -9 (и последующие точки по аналогии)
Подставляем: -9=3^2
-9=9 - неверно, зн. точка не принадлежит графику функции у= х^2
B( 1;1)
у= х^2
1=1^2
1=1- верно, зн. точка принадлежит графику функции у= х^2
C(-1;-1)
-1=1 - неверно, зн. точка не принадлежит графику функции у= х^2
D ( -3;9)
9= 9 - верно, зн. точка принадлежит графику функции у= х^2
Задание 2)
а) х (нулевое) = -b\2a = 4\2= 2
у (нулевое) = у(х)=у(2) = 4-8+5= 1
(2;1)-вершина
б) х(нулевое) = 7\4
у(нулевое) = 2*49\16 - 7*7\4 + 9 = 49\8 - 49\4 + 9 = 49\8 - 96\8 +9 = = -49\8 + 9= 9 - 6 1\8 = 8 8\8 - 6 1\8 = 2 7\8
( 7\4; 2 7\8) - вершина
Задание 3.)
1) Пусть у = 0, тогда -2х^2 + 3х +2 = 0
D= 25
х 1 =- 1\2 х2 = 2
( -1\2 ;0) , (2;0) - точки пересечения параболы с осью ОХ
Пусть х=0 , тогда y=2
(0;2) - точка пересечения параболы с осью OY
4) у = х^2 - 2х -1
а) х (нулевое) = 2\2= 1
у(нулевое) = 1-2-1= -2
(1;-2) - вершина параболы
б) Пусть х=0, тогда у= -1
(0;-1) - точка пересечения с осью ОУ
в) х= -1, 2 ,3(подставляем значения х)
у= 2, -5, -4
Далее строим параболу по этим точкам. Находим, где функция возрастает, а где убывает.
Так как старший коэффициент уравнения 2, то уравнение 3x²–2kx–k+6=0 квадратное.
Квадратное уравнение не имеет корней, только в случае если дискриминант отрицателен.
Найдем дискриминант:
Д=(–2k)²–4*3*(–k+6)= 4k²+12k–72
Найдем в каких случаях он отрицателен.
4k²+12k–72<0
k²+3k–18<0
Графиком функции у=k²+3k–18 является парабола. Следовательно k²+3k–18<0 при k, значения когда график данной функции ниже прямой у=0
Найдем пересечение с прямой у=0.
k²+3k–18=0
Д=3²–4*1*(–18)= 9+72=81.
k(1)= (–3+√81)÷(2*1)= 6÷2=3
k(2)= (–3–√81)÷(2*1)= –12÷2= –6
Значит точки пересечения графиков у=k²+3k–18 и у=0, будут точки с координатами (–6;0) и (3;0)
Так как коэффициент при k² положительный, то ветви параболы будут направлены вверх. Тогда k²+3k–18<0 при k€(–6;3).
Следовательно уравнение 3x²–2kx–k+6=0 не имеет корней при k€(–6;3)
ответ: (–6;3)
Объяснение:
ВАРИАНТ 1.
Задание 1) у= х^2
Подставляем значения х и у в данную фунцкию:
A( 3:-9) , Где х=3, у= -9 (и последующие точки по аналогии)
Подставляем: -9=3^2
-9=9 - неверно, зн. точка не принадлежит графику функции у= х^2
B( 1;1)
у= х^2
1=1^2
1=1- верно, зн. точка принадлежит графику функции у= х^2
C(-1;-1)
у= х^2
-1=1 - неверно, зн. точка не принадлежит графику функции у= х^2
D ( -3;9)
у= х^2
9= 9 - верно, зн. точка принадлежит графику функции у= х^2
Задание 2)
а) х (нулевое) = -b\2a = 4\2= 2
у (нулевое) = у(х)=у(2) = 4-8+5= 1
(2;1)-вершина
б) х(нулевое) = 7\4
у(нулевое) = 2*49\16 - 7*7\4 + 9 = 49\8 - 49\4 + 9 = 49\8 - 96\8 +9 = = -49\8 + 9= 9 - 6 1\8 = 8 8\8 - 6 1\8 = 2 7\8
( 7\4; 2 7\8) - вершина
Задание 3.)
1) Пусть у = 0, тогда -2х^2 + 3х +2 = 0
D= 25
х 1 =- 1\2 х2 = 2
( -1\2 ;0) , (2;0) - точки пересечения параболы с осью ОХ
Пусть х=0 , тогда y=2
(0;2) - точка пересечения параболы с осью OY
4) у = х^2 - 2х -1
а) х (нулевое) = 2\2= 1
у(нулевое) = 1-2-1= -2
(1;-2) - вершина параболы
б) Пусть х=0, тогда у= -1
(0;-1) - точка пересечения с осью ОУ
в) х= -1, 2 ,3(подставляем значения х)
у= 2, -5, -4
Далее строим параболу по этим точкам. Находим, где функция возрастает, а где убывает.
Объяснение:
Так как старший коэффициент уравнения 2, то уравнение 3x²–2kx–k+6=0 квадратное.
Квадратное уравнение не имеет корней, только в случае если дискриминант отрицателен.
Найдем дискриминант:
Д=(–2k)²–4*3*(–k+6)= 4k²+12k–72
Найдем в каких случаях он отрицателен.
4k²+12k–72<0
k²+3k–18<0
Графиком функции у=k²+3k–18 является парабола. Следовательно k²+3k–18<0 при k, значения когда график данной функции ниже прямой у=0
Найдем пересечение с прямой у=0.
k²+3k–18=0
Д=3²–4*1*(–18)= 9+72=81.
k(1)= (–3+√81)÷(2*1)= 6÷2=3
k(2)= (–3–√81)÷(2*1)= –12÷2= –6
Значит точки пересечения графиков у=k²+3k–18 и у=0, будут точки с координатами (–6;0) и (3;0)
Так как коэффициент при k² положительный, то ветви параболы будут направлены вверх. Тогда k²+3k–18<0 при k€(–6;3).
Следовательно уравнение 3x²–2kx–k+6=0 не имеет корней при k€(–6;3)
ответ: (–6;3)