А) Вероятность первого события равна 3/6=1/2; вероятность второго равна 4/6=2/3. Поскольку события независимы, вероятность того, что они произойдут одновременно, равна произведению вероятностей: 1/2·2/3=1/3.
б) Найдем вероятность противоположного события, а затем из 1 вычтем полученный результат. Противоположное событие означает, что ни на одной кости не выпадет 6 очков. Снова, как и в первой задаче, то, что выпадает на первой кости и то, что выпрадает на второй - независимые события, поэтому вероятности этих событий перемножаем: 5/6·5/6=25/36; 1-25/36=11/36
б) Найдем вероятность противоположного события, а затем из 1 вычтем полученный результат. Противоположное событие означает, что ни на одной кости не выпадет 6 очков. Снова, как и в первой задаче, то, что выпадает на первой кости и то, что выпрадает на второй - независимые события, поэтому вероятности этих событий перемножаем: 5/6·5/6=25/36; 1-25/36=11/36
y=√(x−3)−|x+1|
одз: х>=3
y'=1/(2√(x−3))-sgn(x+1)
1/(2√(x−3))-sgn(x+1)=0
при х>=3 sgn(x+1) =1
1/(2√(x−3))-1=0
2√(x−3)=1
√(x−3)=1/2
x−3=1/4
х=3+1/4
y(3+1/4)=√(3+1/4−3)−|3+1/4+1|=√(1/4)−|4+1/4|=1/2−4-1/4=-3-3/4
ответ: -3-3/4
PS
находим наибольшее, потому как наименьшего не существует
пример при х=3 получится 0-4=-4 - еще меньше, но среди вариантов такого нет
и вообще при стремлении х к бесконечности линейная функция убывает быстрее чем растет корень, поэтому наименьшего на самом деле нет, а
-3-3/4 - наибольшее