В линейной функции любому значению аргумента всегда соответствует однозначное значение функции.
Точки можно брать любые. Для построения графика надо брать в пределах размера бумаги, на которой строится график,
Часто принимают х = 0, тогда у этой точки легко находится.
Например, y = 3 - 6*0 = 3.
И вторую точку по х можно взять, чтобы удобно было определить значение функции.
Например, х = 2, у = 3 - 6*2 = 3 - 12 = -9.
Эта точка далековато расположена, можно взять х = 1,
Тогда у = 3 - 6*1 = 3 - 6 = -3.
Иногда функцию приравнивают 0 и находят х.
0 = 3 - 6*х,
6х = 3,
х = 3/6 = 1/2.
а) 4x² - 4x - 15 < 0
D = b² - 4ac = 16 + 4*4*15 = 16 + 240 = 256
x₁ = (-b + √D) / 2a = (4 + 16) / 8 = 20 / 8 = 2,5
x₂ = (-b - √D) / 2a = (4 - 16) / 8 = -12 / 8 = -1,5
(x - 2,5)(х + 1,5) < 0
{ x < 2,5
{ x < -1,5
ответ: (-1,5; 2,5)
б) x² - 81 > 0
(x - 9)(x + 9) > 0
{ x > -9
{ x > 9
ответ: (-9; 9)
в) x² < 1,7х
x² - 1,7х < 0
х(x - 1,7) < 0
{ x < 0
{ x < 1,7
ответ: (0; 1,7)
г) x( x + 3) - 6 < 3 (x + 1)
x² + 3x - 6 - 3x - 3 < 0
x² - 9 < 0
(x - 3)(x + 3) < 0
{ x < -3
{ x < 3
ответ: (-3; 3)
В линейной функции любому значению аргумента всегда соответствует однозначное значение функции.
Точки можно брать любые. Для построения графика надо брать в пределах размера бумаги, на которой строится график,
Часто принимают х = 0, тогда у этой точки легко находится.
Например, y = 3 - 6*0 = 3.
И вторую точку по х можно взять, чтобы удобно было определить значение функции.
Например, х = 2, у = 3 - 6*2 = 3 - 12 = -9.
Эта точка далековато расположена, можно взять х = 1,
Тогда у = 3 - 6*1 = 3 - 6 = -3.
Иногда функцию приравнивают 0 и находят х.
0 = 3 - 6*х,
6х = 3,
х = 3/6 = 1/2.
а) 4x² - 4x - 15 < 0
D = b² - 4ac = 16 + 4*4*15 = 16 + 240 = 256
x₁ = (-b + √D) / 2a = (4 + 16) / 8 = 20 / 8 = 2,5
x₂ = (-b - √D) / 2a = (4 - 16) / 8 = -12 / 8 = -1,5
(x - 2,5)(х + 1,5) < 0
{ x < 2,5
{ x < -1,5
ответ: (-1,5; 2,5)
б) x² - 81 > 0
(x - 9)(x + 9) > 0
{ x > -9
{ x > 9
ответ: (-9; 9)
в) x² < 1,7х
x² - 1,7х < 0
х(x - 1,7) < 0
{ x < 0
{ x < 1,7
ответ: (0; 1,7)
г) x( x + 3) - 6 < 3 (x + 1)
x² + 3x - 6 - 3x - 3 < 0
x² - 9 < 0
(x - 3)(x + 3) < 0
{ x < -3
{ x < 3
ответ: (-3; 3)