Дабы упростить задачу, сделаем так, чтобы график квадратичной функции касался прямой y = 3 в своей вершине. Вершина параболы y = x² - это точка O(0; 0). При параллельном переносе на 6 ед. влево и 3 ед. вверх вершиной параболы будет точка O1(6; 3). Чтобы из графика функции y = x² получить график функции y = (x - 6)² + 3, нужно y = x² перетащить на 6 ед. влево и на 3 ед. вверх, что мы и сделаем. В конечном итоге получим график квадратичной функции, которая касается в своей вершине прямой y = 3 в точке с абсциссой 6.
1. q = -2.
2. 1;1/2;1/4 q = 1/2
1;3;9q = 3
2/3;1/2;3/8q = 3/4
√2; 1;√2/2q = 1/√2
3. заданная формула возможно неточно переписана или последовательность не геометрическая.
3*2n - 3 умножить на 2n или 3 возвести в степень 2n
4. q = 0,5
5. S = -0.25
6. b6 = 243.
7. 3-n,3-2n,3-3n,3-4n, 3n,3n+1,3n+2,3n+3 - єти последовательности не являются геометрическими прогрессиями
Объяснение:
1. Последовательность геометрическая т.к. а2 = а1 * q, а3 = а2 * q, где
q - одно и тоже число (знаменатель данной геометрической прогрессии)
q = а2 / а1 = -6 / 3 = -2.
4. Из формулы нахождения n-го члена геометрической прогрессии
q = а2 / а1 = 10/20 = 0,5.
5. q = а2 / а1 = -2/4 = -0,5
а5 = 4 * (-0,5)^4 = 0.25
a4 = 4 * (-0.5) ^3 = -0.5
6. b6 = b1 * q^5 = 243.
Вершина параболы y = x² - это точка O(0; 0).
При параллельном переносе на 6 ед. влево и 3 ед. вверх вершиной параболы будет точка O1(6; 3).
Чтобы из графика функции y = x² получить график функции y = (x - 6)² + 3, нужно y = x² перетащить на 6 ед. влево и на 3 ед. вверх, что мы и сделаем.
В конечном итоге получим график квадратичной функции, которая касается в своей вершине прямой y = 3 в точке с абсциссой 6.
ответ: y = (x - 6)² + 3.