Последовательные натуральные числа образуют арифметическую прогрессию. Ее сумма: Sn = n(a1 + an)/2, где а1 - первый член прогрессии, аn - последний член. По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528. Получается неравенство: 528 > n(1+n)/2 n(1+n) < 1056 n^2 + n - 1056 <0 Найдем корни: Дискриминант: Корень из (1+4•1056) = = корень из (1+4224) = = корень из 4225 = 65 n1 = (-1+65)/2 = 64/2 = 32 n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0 n-32<0 n+32>0
n<32 n>-32 - не подходит, поскольку n >0
1 < n < 32 Это значит, что n= 31.
ответ: 31
Проверка: Если бы n=32, то: (1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
Ее сумма:
Sn = n(a1 + an)/2,
где а1 - первый член прогрессии, аn - последний член.
По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528.
Получается неравенство:
528 > n(1+n)/2
n(1+n) < 1056
n^2 + n - 1056 <0
Найдем корни:
Дискриминант:
Корень из (1+4•1056) =
= корень из (1+4224) =
= корень из 4225 = 65
n1 = (-1+65)/2 = 64/2 = 32
n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0
n-32<0
n+32>0
n<32
n>-32 - не подходит, поскольку n >0
1 < n < 32
Это значит, что n= 31.
ответ: 31
Проверка:
Если бы n=32, то:
(1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-1)^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-(-1))/(2*1)=(5-(-1))/2=(5+1)/2=6/2=3;x_2=(-√25-(-1))/(2*1)=(-5-(-1))/2=(-5+1)/2=-4/2=-2.
Выражение: x^2+3*x-4=(x-1)(x+4)
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=3^2-4*1*(-4)=9-4*(-4)=9-(-4*4)=9-(-16)=9+16=25;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-3)/(2*1)=(5-3)/2=2/2=1;x_2=(-√25-3)/(2*1)=(-5-3)/2=-8/2=-4.
Выражение: x^2-8*x+15=(x-5)(x-3)
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-8)^2-4*1*15=64-4*15=64-60=4;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(=√4-(-8))/(2*1)=(2-(-8))/2=(2+8)/2=10/2=5;x_2=(-=√4-(-8))/(2*1)=(-2-(-8))/2=(-2+8)/2=6/2=3.
Выражение: x^2+8*x+12=(x+2)(x+6)
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=8^2-4*1*12=64-4*12=64-48=16;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√16-8)/(2*1)=(4-8)/2=-4/2=-2;x_2=(-√16-8)/(2*1)=(-4-8)/2=-12/2=-6.