1. 1) (c - 6)2 = 2c - 12.
3) (5 - a)(5 + a) = 25 - a^2.
2) (2a - 36)2 = 4a - 72,
4) (7x + 10y)(10y - 1x) = 70xy - 7x^2 + 100y^2 - 10xy^2,
2. 1) ь? - що це?
3) 100 - 9x^2 = (10 - 3x)(10 + 3x).
2) c? - а це що?
4) 4a + 20ab + 25b^2 = (2a + 5b)^2 (напевно там повинно бути 4a^2)
4.
1 варіант
4(3y + 1)^2 - 27 = (4y + 9)(4y - 9) + 2(5y + 2)(2y - 7)
4(9y^2 + 6y + 1) - 27 = 16y^2 - 81 + 2(10y^2 - 35y + 4y - 14)
36y^2 + 24y + 4 - 27 = 16y^2 - 81 + 20y^2 - 70y + 8y - 28
36y^2 + 24y - 16y^2 - 20y^2 - 70y + 8y = 27 - 4 - 81 - 28
54y = - 29
y = - 29 / 54
2 варіант
4 * 9y^2 + 6y + 1 - 27 = 16y^2 - 81 + 2 * 10y^2 - 35y + 4y - 14
36y^2 + 6y + 1 - 27 = 16y^2 - 81 + 20y^2 - 35y + 4y - 14
36y^2 + 6y - 16y^2 - 20y^2 + 35y - 4y = 27 - 1 - 81 - 28
37y = - 83
y = - 83 / 37
y = - 2 9/37
Напишіть хтось, який правильний. Може десь є помилка.
5, 6 - що це за знаки питання?
y= (x-10)²·(x+10)-7
y=(x-10)·(x-10)·(x+10)-7
но можно перемножить выражения во второй и третьей скобках:
y=(x-10)·(x²-100) -7
Применяем правило вычисления производной произведения
y`=(x-10)`·(x²-100) + (х-10)·(х²-100)`=
=1·(x²-100) +(x-10)·2x=
=(x-10)·(x-10) + (x-10)·2x=
=(x-10)·(x-10+2x)=(x-10)(3x-10)
y`=0
x-10=0 или 3х-10=0
х=10 или x=10/3
(10/3)∉[8;18]
х=10 - точка минимума, производная меняет знак с - на +
В точке х=10 функция принимает наименьшее значение на [8;18]
y(10)=(10-10)^2(10+10)-7=0-7=-7
О т в е т. -7
1. 1) (c - 6)2 = 2c - 12.
3) (5 - a)(5 + a) = 25 - a^2.
2) (2a - 36)2 = 4a - 72,
4) (7x + 10y)(10y - 1x) = 70xy - 7x^2 + 100y^2 - 10xy^2,
2. 1) ь? - що це?
3) 100 - 9x^2 = (10 - 3x)(10 + 3x).
2) c? - а це що?
4) 4a + 20ab + 25b^2 = (2a + 5b)^2 (напевно там повинно бути 4a^2)
4.
1 варіант
4(3y + 1)^2 - 27 = (4y + 9)(4y - 9) + 2(5y + 2)(2y - 7)
4(9y^2 + 6y + 1) - 27 = 16y^2 - 81 + 2(10y^2 - 35y + 4y - 14)
36y^2 + 24y + 4 - 27 = 16y^2 - 81 + 20y^2 - 70y + 8y - 28
36y^2 + 24y - 16y^2 - 20y^2 - 70y + 8y = 27 - 4 - 81 - 28
54y = - 29
y = - 29 / 54
2 варіант
4(3y + 1)^2 - 27 = (4y + 9)(4y - 9) + 2(5y + 2)(2y - 7)
4 * 9y^2 + 6y + 1 - 27 = 16y^2 - 81 + 2 * 10y^2 - 35y + 4y - 14
36y^2 + 6y + 1 - 27 = 16y^2 - 81 + 20y^2 - 35y + 4y - 14
36y^2 + 6y - 16y^2 - 20y^2 + 35y - 4y = 27 - 1 - 81 - 28
37y = - 83
y = - 83 / 37
y = - 2 9/37
Напишіть хтось, який правильний. Може десь є помилка.
5, 6 - що це за знаки питання?
y= (x-10)²·(x+10)-7
y=(x-10)·(x-10)·(x+10)-7
но можно перемножить выражения во второй и третьей скобках:
y=(x-10)·(x-10)·(x+10)-7
y=(x-10)·(x²-100) -7
Применяем правило вычисления производной произведения
y`=(x-10)`·(x²-100) + (х-10)·(х²-100)`=
=1·(x²-100) +(x-10)·2x=
=(x-10)·(x-10) + (x-10)·2x=
=(x-10)·(x-10+2x)=(x-10)(3x-10)
y`=0
x-10=0 или 3х-10=0
х=10 или x=10/3
(10/3)∉[8;18]
х=10 - точка минимума, производная меняет знак с - на +
В точке х=10 функция принимает наименьшее значение на [8;18]
y(10)=(10-10)^2(10+10)-7=0-7=-7
О т в е т. -7