ответ:иррациональное
Объяснение:
Пусть √28 + 10√3 рациональное
√28 + 10√3=√4*7+10√3=2√7+10√3=2(√7+5√3)-рациональное
2 рациональное, значит √7+5√3 рациональное.
возведем в квадрат (√7+5√3)^2=7+2*5√3*7+25*3=7+10*√21+75=82+10*√21
√7+5√3 рациональное значит, √7+5√3 в квадрате тоже рациональное.
Значит 82+10*√21 рациональное, 82 рациональное => 10*√21, тоже рациональное.
10 рациональное значит √21 рациональное ПРОТИВОРЕЧИЕ
значит√28 + 10√3 иррациональное
(если что мы предполагали что √28 + 10√3 рациональное)
ответ:иррациональное
Объяснение:
Пусть √28 + 10√3 рациональное
√28 + 10√3=√4*7+10√3=2√7+10√3=2(√7+5√3)-рациональное
2 рациональное, значит √7+5√3 рациональное.
возведем в квадрат (√7+5√3)^2=7+2*5√3*7+25*3=7+10*√21+75=82+10*√21
√7+5√3 рациональное значит, √7+5√3 в квадрате тоже рациональное.
Значит 82+10*√21 рациональное, 82 рациональное => 10*√21, тоже рациональное.
10 рациональное значит √21 рациональное ПРОТИВОРЕЧИЕ
значит√28 + 10√3 иррациональное
(если что мы предполагали что √28 + 10√3 рациональное)
(y-2)^2; (y+2)^2
(7x-3)^2; (7x+3)^2
(8m^3-7)^2; (8m^3+7)^2
(-6-10p)^2; (-6+10p)^2
(2x-3y)^2; (2x+3y)^2
(5e-4q)^2; (5e+4q)^2
(9t+3z)^2 (это квадрат разности!); (9t-3z)^2 (это квадрат суммы!)
(2d+5d)^2 = (7d)^2 (разности!); (2d-5d)^2 = (-3d)^2 = (3d)^2 (суммы!)
2)
72^2 = (70 + 2)^2 = 70^2 + 2*70*2 + 2^2 = 4900+280+4 = 5184
31^2 = (30+1)^2 = 30^2 + 2*30*1 + 1^2 = 900 + 60 + 1 = 961
3,2^2 = (3 + 0,2)^2 = 3^2 + 2*3*0,2 + 0,2^2 = 9 + 1,2 + 0,04 = 10,24
6,3^2 = (6 + 0,3)^2 = 6^2 + 2*6*0,3 + 0,3^2 = 36+3,6+0,09 = 39,69
2,95^2 = (3-0,05)^2 = 3^2-2*3*0,05+0,05^2 = 9-0,3+0,0025 = 8,7025
9,99^2=(10-0,01)^2=10^2-2*10*0,01+0,0001=100-0,2+0,0001=99,8001