Объяснение:
1) 3 - 21x = 24x² ;
24x² + 21x - 3 = 0 ; │: 3
8x² + 7x - 1 = 0 ;
D = 7² - 4*8*( - 1 ) = 81 > 0 ; x₁ = ( - 7 - 9 )/2*8 = - 1 ; x₂ = ( -7 + 9 )/2*8 = 1/8 .
В - дь : - 1 ; 1/8 .
2) 32x² + 9x = - 36x ;
32x² + 9x + 36x = 0 ;
32x² + 45x = 0 ;
x* ( 32x + 45 ) = 0 ;
x₁ = 0 ; 32x + 45 = 0 ;
32x = - 45 ;
x = - 45/32 ;
x = - 1 13/32 . В - дь : - 1 13/32 ; 0 .
3) 9 = 48x² + 6x ;
48x² + 6x - 9 = 0 ; │ : 3
16x² + 2x - 3 = 0 ;
D = 196 > 0 ; x₁= - 1/2 ; x₂= 3/8 .
В - дь : - 1/2 ; 3/8 .
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z
Объяснение:
1) 3 - 21x = 24x² ;
24x² + 21x - 3 = 0 ; │: 3
8x² + 7x - 1 = 0 ;
D = 7² - 4*8*( - 1 ) = 81 > 0 ; x₁ = ( - 7 - 9 )/2*8 = - 1 ; x₂ = ( -7 + 9 )/2*8 = 1/8 .
В - дь : - 1 ; 1/8 .
2) 32x² + 9x = - 36x ;
32x² + 9x + 36x = 0 ;
32x² + 45x = 0 ;
x* ( 32x + 45 ) = 0 ;
x₁ = 0 ; 32x + 45 = 0 ;
32x = - 45 ;
x = - 45/32 ;
x = - 1 13/32 . В - дь : - 1 13/32 ; 0 .
3) 9 = 48x² + 6x ;
48x² + 6x - 9 = 0 ; │ : 3
16x² + 2x - 3 = 0 ;
D = 196 > 0 ; x₁= - 1/2 ; x₂= 3/8 .
В - дь : - 1/2 ; 3/8 .