х+21 (км/ч) - скорость мотоциклиста, которая на 21 км/ч больше скорости велосипедиста, из условия задачи.
4*(х+21) (км) - расстояние, которое за 4 часа проехал мотоциклист между городами.
7х (км) - расстояние, которое за 7 часов проехал велосипедист между городами.
4*(х+21)=7х (км) - расстояние между городами, которое мотоциклист проехал, равно расстоянию между городами, которое велосипедист проехал - по условию задачи.
Тогда:
4*(х+21)=7х
4х+4*21=7х
4х+84=7х
4х-7х = -84
-3х = -84
х = -84: (-3)
х=28 (км/ч) - скорость велосипедиста.
28+21=49 (км/ч) - скорость мотоциклиста.
49*4=196 (км) - растояние между городами, которое проехал мотоциклист
или
28*7=196 (км) - растояние между городами, которое проехал велосипедист.
Обозначим cлагаемые за Х,У,Z
(X+Y+Z)/3>=1
Согласно неравенству о среднем арифметическом и среднем геометрическом достаточно доказать :
ХУZ>=1
Вернемся к исходным обозначениям
8abc>=(a+b)(b+c)(a+c)
Снова согласно неравенству о среднем арифметическом и среднем геометрическом видим
a+b>=2sqrt(ab) b+c>=2sqrt(сb) (a+c)>=2sqrt(ac)
поэтому можим заменить сомножители справа на произведение
2sqrt(ab)*2sqrt(aс)*2sqrt(сb)=8abc, что и доказывает неравенство.
Равенство достигается только при а=с=b
х км/ч - скорость велосипедиста.
х+21 (км/ч) - скорость мотоциклиста, которая на 21 км/ч больше скорости велосипедиста, из условия задачи.
4*(х+21) (км) - расстояние, которое за 4 часа проехал мотоциклист между городами.
7х (км) - расстояние, которое за 7 часов проехал велосипедист между городами.
4*(х+21)=7х (км) - расстояние между городами, которое мотоциклист проехал, равно расстоянию между городами, которое велосипедист проехал - по условию задачи.
Тогда:
4*(х+21)=7х
4х+4*21=7х
4х+84=7х
4х-7х = -84
-3х = -84
х = -84: (-3)
х=28 (км/ч) - скорость велосипедиста.
28+21=49 (км/ч) - скорость мотоциклиста.
49*4=196 (км) - растояние между городами, которое проехал мотоциклист
или
28*7=196 (км) - растояние между городами, которое проехал велосипедист.
Проверка
196 = 196
ответ: 28 км/ч; 49 км/ч; 196 км.