В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С 4 4 4 5 5 5 4 4 5 4 5 5 5 5 4 5 4 4 4 5 4 5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б 3 3 4 4 5 5 3 4 4 3 4 5 5 4 3 5 5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу: - где a-число оценок, b-число учеников.
В итоге и получаем: 1 случай:
2 случай:
3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5). Отсюда:
Второй
Для первого ученика существует 4 варианта: 2,3,4,5 Для второго ученика существует 4 варианта на каждый вариант первого ученика. То есть: - варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика. То есть: - варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
1 ученик - А
2 ученик - Б
Получаем:
А Б
4 5
5 4
5 5
4 4
В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С
4 4 4
5 5 5
4 4 5
4 5 5
5 5 4
5 4 4
4 5 4
5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б
3 3
4 4
5 5
3 4
4 3
4 5
5 4
3 5
5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу:
- где a-число оценок, b-число учеников.
В итоге и получаем:
1 случай:
2 случай:
3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
Второй
Для первого ученика существует 4 варианта:
2,3,4,5
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
- варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
- варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
- вариантов событий.
1) Решаем через сложение:
{3m-2n=5 → {3m-2n+m+2n=5+15
{m+2n=15 → {m+2n=15
Переписываем первое и решаем отдельно:
3m-2n+m+2n=5+15
4m=20
m=5
Зная одно, можем через подставку узнать другое:
m+2n=15
5+2n=15
2n=10
n=5
ответ: m=5, n=5.
2) Из второго вычтем первое:
{a+3b=2 → {a+3b=2
{2a+3b=7 → {2а+3b-a-3b=7-2
Выписываем второе и решаем отдельно:
2а+3b-a-3b=7-2
а=5
Теперь находим первое:
a+3b=2
5+3b=2
3b= -3
b= -1
ответ: b= -1, а=5.
3) Находим k во втором и решаем первое через подставку:
{3k-5p=14 → {3(1-2p)-5p=14
{k+2p=1 → {k=1-2p
Выписываем первое и решаем отдельно:
3(1-2p)-5p=14
3-6p-5p=14
-11p=11
p= -1
Зная первое, найдём второе:
k=1-2p
k=1-2*(-1)
k=1+2
k=3
ответ: p= -1, k=3.
4) Находим в первом d и решаем через подставку:
{2c-d=2 → {2с-2=d
{3c-2d=3 → {3c-2(2c-2)=3
Выписываем второе и решаем отдельно:
3c-2(2c-2)=3
3с-4с+4=3
-с = -1
с=1
Зная одно, можем найти другое:
2с-2=d
2-2=d
d=0
ответ: с=1, d=0.