Решим задачу на нахождение времени, скорости, расстояния
Дано:
S=30 км
v(течения)=2 км/час
t(мот. лодка) = через 1 ч.
t(встречи)=2 ч.
Найти:
v(лодки)=? км/час
Решение
МАТЕМАТИЧЕСКИЙ
1) Посчитаем, сколько всего времени плыл плот до встречи с моторной лодкой, зная что он отправился из пункта А на 1 час раньше и был ещё в пути 2 часа:
1+2=3 (часа) - плыл плот до встречи с моторной лодкой.
2) Посчитаем сколько км проплыл плот за 3 часа, зная что он проплыл по течению реки, скорость которой равна скорости плота v(теч.)=v (плота)= 2 км/час
S(расстояние)=v(скорость)×t(время)=2×3=6 (км) - проплыл плот до встречи с катером.
2) Вычислим какое расстояние проплыла моторная лодка за 2 часа, зная что плот проплыл из 30 км только 6 км:
30-6=24 (км) - за два часа проплыла моторная лодка.
Пусть х км/час - собственная скорость моторной лодки. Значит, скорость лодки против течения реки составит х-2 км/час. Скорость плота равна скорости течения реки v(плота)=2 км/час.
Моторная лодка была в пути 2 часа и проплыла 2×(х-2) км.
Плот плыл 1 час +2 часа =3 часа и преодолел расстояние 3×2 =6 км.
Расстояние между ними составляло 30 км.
Составим и решим уравнение:
2×(х-2)+6=30
2х-4=30-6
2х-4=24
2х=24+4
2х=28
х=28÷2=14 (км/час) - собственная скорость катера.
ответ: собственная скорость катера равна 14 км/час.
Объяснение:
Решим задачу на нахождение времени, скорости, расстояния
Дано:
S=30 км
v(течения)=2 км/час
t(мот. лодка) = через 1 ч.
t(встречи)=2 ч.
Найти:
v(лодки)=? км/час
Решение
МАТЕМАТИЧЕСКИЙ
1) Посчитаем, сколько всего времени плыл плот до встречи с моторной лодкой, зная что он отправился из пункта А на 1 час раньше и был ещё в пути 2 часа:
1+2=3 (часа) - плыл плот до встречи с моторной лодкой.
2) Посчитаем сколько км проплыл плот за 3 часа, зная что он проплыл по течению реки, скорость которой равна скорости плота v(теч.)=v (плота)= 2 км/час
S(расстояние)=v(скорость)×t(время)=2×3=6 (км) - проплыл плот до встречи с катером.
2) Вычислим какое расстояние проплыла моторная лодка за 2 часа, зная что плот проплыл из 30 км только 6 км:
30-6=24 (км) - за два часа проплыла моторная лодка.
3) Посчитаем скорость лодки против течения реки:
24÷2=12 (км/час)
4) Значит собственная скорость лодки равна:
v(против течения)=v(собст.) - v(течения)
отсюда
v(собств.)=v(течения)+v(против течения)=2+12=14 (км/час)
ответ: собственная скорость лодки равна 14 км/час
АЛГЕБРАИЧЕСКИЙ
Пусть х км/час - собственная скорость моторной лодки. Значит, скорость лодки против течения реки составит х-2 км/час. Скорость плота равна скорости течения реки v(плота)=2 км/час.
Моторная лодка была в пути 2 часа и проплыла 2×(х-2) км.
Плот плыл 1 час +2 часа =3 часа и преодолел расстояние 3×2 =6 км.
Расстояние между ними составляло 30 км.
Составим и решим уравнение:
2×(х-2)+6=30
2х-4=30-6
2х-4=24
2х=24+4
2х=28
х=28÷2=14 (км/час) - собственная скорость катера.
ответ: собственная скорость катера равна 14 км/час.
1y-0.5-0.5+0.2y+1=0
1.2y=0
y=0
ответ: 0
2) (x² +3x+2)(x² +3x+4)=8
(x² +3x+2)(x² +3x+2+2)=8
y=x² +3x+2
y(y+2)=8
y² +2y-8=0
D=4+32=36
y₁=(-2-6)/2= -4
y₂=(-2+6)/2=2
При у= -4
x² +3x+2= -4
x² +3x+2+4=0
x² +3x+6=0
D=9-24<0
нет решений.
При у=2
x² +3x+2=2
x² +3x+2-2=0
x² +3x=0
x(x+3)=0
x=0 x+3=0
x= -3
ответ: -3; 0.
3) (x² -2x-3)(4-x² +2x)= -2
(x² -2x-3)*(-(x² -2x-4))= -2
(x² -2x-3)(x² -2x-3-1)=2
y=x² -2x-3
y(y-1)=2
y² -y-2=0
D=1+8=9
y₁=(1-3)/2= -1
y₂=(1+3)/2=2
При у= -1
x² -2x-3= -1
x² -2x-3+1=0
x² -2x-2=0
D=4+8=12
x₁=(2-√12)/2=(2-2√3)/2=1-√3
x₂=1+√3
ответ: 1-√3; 1+√3
4) (x² -x-11)(x² -x-21)= -9
(x² -x-11)(x² -x-11-10)= -9
y=x² -x-11
y(y-10)= -9
y² -10y+9=0
D=100-36=64
y₁=(10-8)/2=1
y₂=(10+8)/2=9
При у=1
x² -x-11=1
x² -x-11-1=0
x² -x-12=0
D=1+48=49
x₁=(1-7)/2= -3
x₂=(1+7)/2=4
При у=9
x² -x-11=9
x² -x-11-9=0
x² -x-20=0
D=1+80=81
x₁=(1-9)/2= -4
x₂=(1+9)/2=5
ответ: -4; -3; 4; 5.