1) Число 66790, А={0, 6, 7, 9} - множество цифр числа
Число 40075, В={0, 4, 5, 7} - множество цифр числа
A∩B = {0;7}
2) А - множество делителей числа 24, A={1; 2; 3; 4; 6; 12; 24}
В - множество чисел, кратных числу 6, B={6; 12; 18; 24; 30; 36;...}
A∩B = {6; 12; 24}
3) А -множество однозначный чисел (однозначные числа - это числа, состоящие из одного знака) , A={0; 1; 2; 3; 4; 5; 6; 7; 8; 9}
В- множество составных чисел, (составные числа - это натуральные числа большие 1, не являющиеся простыми числами, т.е. состоящие из произведения двух или нескольких множителей, так 4=2*2, 6=2*3, 8=2*2*2, 9=3*3, 10=2*5 и т.д.)
Данная зависимость является функцией, потому что это определенный закон, согласно которому каждому элементу одного множества ставится в соответствие элемент другого. В нашем случае Y зависит от значений X
Область определения х∈(-∞;+∞) , т.к. графиком этой функции будет парабола ветвями вверх. Область значений найдем определив вершину параболы. Абсцисса вершины равна -b/2a=-6/2=-3. Ордината вершины равна (-3)^2+6(-3)+12=9-18+12=3. Значит вершина находится в точке (-3;3) и т.к. парабола ветвями вверх значит область значений y∈[3;+∞).
ответ на последний вопрос в решении уравнения 3=x^2+6x+12; если решение есть, то ответ утвердительный. x^2+6x+9=0; D=36-4*9=0; x=-6/2=-3
Объяснение:
1) Число 66790, А={0, 6, 7, 9} - множество цифр числа
Число 40075, В={0, 4, 5, 7} - множество цифр числа
A∩B = {0;7}
2) А - множество делителей числа 24, A={1; 2; 3; 4; 6; 12; 24}
В - множество чисел, кратных числу 6, B={6; 12; 18; 24; 30; 36;...}
A∩B = {6; 12; 24}
3) А -множество однозначный чисел (однозначные числа - это числа, состоящие из одного знака) , A={0; 1; 2; 3; 4; 5; 6; 7; 8; 9}
В- множество составных чисел, (составные числа - это натуральные числа большие 1, не являющиеся простыми числами, т.е. состоящие из произведения двух или нескольких множителей, так 4=2*2, 6=2*3, 8=2*2*2, 9=3*3, 10=2*5 и т.д.)
В={4; 6; 8; 9; 10; 12;...}
A∩B={4; 6; 8}
Область определения х∈(-∞;+∞) , т.к. графиком этой функции будет парабола ветвями вверх. Область значений найдем определив вершину параболы. Абсцисса вершины равна -b/2a=-6/2=-3. Ордината вершины равна (-3)^2+6(-3)+12=9-18+12=3. Значит вершина находится в точке (-3;3) и т.к. парабола ветвями вверх значит область значений y∈[3;+∞).
ответ на последний вопрос в решении уравнения 3=x^2+6x+12; если решение есть, то ответ утвердительный. x^2+6x+9=0; D=36-4*9=0; x=-6/2=-3