Смогла только первую функцию:)Область определения функций определяется как нахождение всех допустимых значеий х, и имеет некоторые ограничения. а. Если определяемая функция нахолится в знаменателе дроби, но значение функции не должно равняться нулю. б.Если определяемая функция находится под знаком корня, то её значение должно быть больше или равно 0. В данной функции нет знаменателя или корня, поэтому область определения функции имеет бесконечное множетво чисел. 2)Область значений- все значения переменной y 3) эта функция имеет общий вид y=kx+b. График-прямая.
#3/ 1.Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых, действительных или комплексныхчисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы/. Виды: Виды матриц: квадратная, студенчатая, нулевая, дигональная, единичная, скалярная, треугольная и другие 2. Для матрицы определены следующие алгебраические операции:сложение матриц, имеющих один и тот же размер;умножение матриц подходящего размера (матрицу, имеющую n столбцов, можно умножить справа на матрицу, имеющую n строк);в том числе умножение на матрицу вектора (по обычному правилу матричного умножения; вектор является в этом смысле частным случаем матрицы);умножение матрицы на элемент основного кольца или поля (то есть скаляр).
а. Если определяемая функция нахолится в знаменателе дроби, но значение функции не должно равняться нулю.
б.Если определяемая функция находится под знаком корня, то её значение должно быть больше или равно 0.
В данной функции нет знаменателя или корня, поэтому область определения функции имеет бесконечное множетво чисел.
2)Область значений- все значения переменной y
3) эта функция имеет общий вид y=kx+b. График-прямая.
2. Для матрицы определены следующие алгебраические операции:сложение матриц, имеющих один и тот же размер;умножение матриц подходящего размера (матрицу, имеющую n столбцов, можно умножить справа на матрицу, имеющую n строк);в том числе умножение на матрицу вектора (по обычному правилу матричного умножения; вектор является в этом смысле частным случаем матрицы);умножение матрицы на элемент основного кольца или поля (то есть скаляр).