В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
karinemirova2
karinemirova2
08.08.2022 02:59 •  Алгебра

ПРЯМ ЭТО КОНТРОША БЕЗ ОШИБОК ОЧЕНЬ ОЧЕНЬ ​


ПРЯМ ЭТО КОНТРОША БЕЗ ОШИБОК ОЧЕНЬ ОЧЕНЬ ​

Показать ответ
Ответ:
koshakmarta
koshakmarta
01.08.2021 14:18

y = 1 - x - x^2 = 1 + 1/4 - (x^2 + x + 1/4) = 5/4 - (x + 1/2)^2

0 < x < 1/2 > 1/4 < y < 1

t = log2(y) > -2 < t < 0

logy(2) = 1/log2(y) = 1/t

t = a/t + b, b > 0

t^2 - bt - a = 0

Обозначим b = 2c, c > 0

Любое значение b <---> любое значение c

t^2 - 2ct - a = 0

t^2 - 2ct + c^2 - c^2 - a = 0

(t - c)^2 = c^2 + a

t - c = +- √(c^2 + a) // c^2 + a >= 0 для любого c > 0 ---> a >= 0

t = c +- √(с^2 + a)

с + √(с^2 + a) >= 0 - не интересует, т.к. нужно найти a, при которых -2 < t < 0

Рассмотрим c - √(с^2 + a) < 0 при любом a > 0

Осталось найти a, при которых

c - √(с^2 + a) > -2

c + 2 > √(с^2 + a) > 0

(c + 2)^2 > c^2 + a

c^2 + 4c + 4 > c^2 + a

4c + 4 > a, при любом c, причем c > 0 следовательно

4с + 4 > 4 >= a

0 < a <= 4

0,0(0 оценок)
Ответ:
vladarzm
vladarzm
01.08.2021 14:18
Как я понял, b-6,5 - это основание логарифмов?
1) Область определения логарифма:
Основание логарифма > 0 и не равно 1
b - 6,5 > 0; b > 6,5
b - 6,5 =/= 1; b =/= 7,5
Число под логарифмом > 0:
x^2 + 1 > 0 - это верно при любом х
(b-5)*x > 0. Так как уже известно, что b > 5, то x > 0

2) Решаем уравнение. Основания логарифмов одинаковые, убираем их
x^2 + 1 = (b-5)*x
x^2 - (b-5)*x + 1 = 0
Так как уравнение должно иметь 2 различных корня, то D > 0
D = (b-5)^2 - 4*1*1 = b^2 - 10b + 25 - 4 = b^2 - 10b + 21 > 0
(b - 3)(b - 7) > 0
b < 3 U b > 7
Но из обл. опр. мы знаем, что
b > 6,5
b =/= 7,5
b принадлежит (7; 7,5) U (7,5; +oo)

3) Найдем x
x^2 - (b-5)*x + 1 = 0
x1 = (b - 5 - √(b^2 - 10b + 21) ) / 2
x2 = (b - 5 + √(b^2 - 10b + 21) ) / 2
Из обл. опр. мы выяснили, что х должен быть > 0.
Ясно, что x2 > x1, поэтому достаточно проверить
(b - 5 - √(b^2 - 10b + 21) ) / 2 > 0
b - 5 - √(b^2 - 10b + 21) > 0 
√(b^2 - 10b + 21) < b - 5
b^2 - 10b + 21 < b^2 - 10b + 25
Это верно при любом b, но проверить было необходимо.
ответ:  b принадлежит (7; 7,5) U (7,5; +oo)
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота